
Éditeurs scientifiques Michel Grouzis, Édouard Le Floc'h

Un arbre au désert Acacia raddiana

Un arbre au désert, Acacia raddiana

Un arbre au désert, Acacia raddiana

Éditeurs scientifiques Michel GROUZIS, Edouard LE FLOC'H

Ouvrage publié avec le soutien de Roselt (Réseau d'observatoires de surveillance écologique à long terme)

IRD Éditions

INSTITUT DE RECHERCHE POUR LE DÉVELOPPEMENT

Paris, 2003

Préparation éditoriale, coordination, fabrication Corinne Lavagne

Mise en page Gris Souris

Maquette de couverture Michelle Saint-Léger

Maquette intérieure Pierre Lopez

Photo de couverture

Formation à Acacia raddiana et Boscia senegalensis en saison sèche (Ferlo, Sénégal).

© IRD / M. Grouzis

Le comité de lecture était constitué de :

CHAIEB Mohamed (écologue), DOMMERGUES Yvon (microbiologiste), FABRE Gérard (entomologiste), Gillon Yves (entomologiste), GROUZIS Michel (écophysiologiste), LAJUDIE (de) Philippe (microbiologiste), LE FLOC'H Edouard (écologue), MILLEVILLE Pierre (agronome), MOUSAIN Daniel (microbiologiste), NORMAND Philippe (microbiologiste), OBATON Michel (microbiologiste), PONTANIER Roger (pédologue), RIOUX Charles (bioclimatologiste), VASSAL Jacques (botaniste).

Que tous en soient vivement remerciés.

Nous remercions également Madame Noly RAZANAJAONARIJERY qui a assuré la mise au point du manuscrit.

La loi du 1^{er} juillet 1992 (code de la propriété intellectuelle, première partie) n'autorisant, aux termes des alinéas 2 et 3 de l'article L. 122-5, d'une part, que les « copies ou reproductions strictement réservées à l'usage du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans le but d'exemple ou d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1^{er} de l'article L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon passible des peines prévues au titre III de la loi précitée.

© IRD Éditions, 2003

ISBN: 2-7099-1522-7

Sommaire

A. Cornet (président du Comité scientifique français de désertification)
Avant-propos
Introduction
Partie Diversités, écologie et usages
Chapitre I Acacia raddiana, un arbre des zones arides à usages multiples
Chapitre 2 La génétique d'Acacia raddiana
Partie 2 Fonctionnement hydrique, phénologie
Chapitre 3 Écologie et régime hydrique de deux formations à Acacia raddiana au nord et au sud du Sahara (Tunisie, Sénégal)
Chapitre 4 Phénologie comparée d'Acacia raddiana au nord et au sud du Sahara
Chapitre 5 Cycle annuel de transpiration d'Acacia raddiana par la mesure des flux de sève brute (Nord-Sénégal)
Partie 3 Micro-organismes associés : diversités et physiologie
Chapitre 6 Diversité taxonomique et propriétés symbiotiques des rhizobia nodulant Acacia raddiana au nord et au sud du Sahara
Chapitre 7 Phénologie de la nodulation d'Acacia raddiana en milieu naturel

Un orbre ou désert, Acacia raddiana

Réponses adaptatives des isolats de Rhizobium aux stress
Chapitre 9 Le potentiel fixateur d'azote d'Acacia raddiana comparé à celui d'Acacia senegal, Acacia seyal et Faidherbia albida
Chapitre 10 Ecologie des champignons mycorhiziens arbusculaires infectant Acacia raddiana. 209 O. Diagne, K. Ingleby
Partie 4 Interactions Acacia/milieu
Chapitre I I Activité biochimique de la rhizosphère d'Acacia raddiana au nord et au sud du Sahara
Chapitre 12 Influence d'Acacia raddiana sur la structure et le fonctionnement de la strate herbacée dans le Ferlo sénégalais
Partie 5 Multiplication de l'espèce : aspects fondamentaux et appliqués 263
Chapitre 13 La graine et la germination d'Acacia raddiana
Chapitre 14 Insectes consommateurs des graines d'Acacia raddiana en Afrique de l'Ouest : les bruches
Chapitre 15 Élevage en pépinière, mise en place et entretien de plantations d'Acacia raddiana en Afrique de l'Ouest
Bilan et Perspectives

Préface

En 1927, dans un article intitulé « Les forêts du Sahara », Lavauden écrivait, parlant des boisements du Sud tunisien : « C'est que dans toute la zone dont nous venons de parler, la désertification, si j'ose dire, est purement artificielle. Elle est uniquement le fait de l'homme. Elle est d'ailleurs relativement récente, et pourrait encore être combattue et enrayée. Il est tout à fait certain par exemple, que la célèbre forêt de Gommiers du Bled Talha, ne doit d'exister encore qu'à la dureté exceptionnelle du bois de Gommier qui décourage les délinquants les plus robustes. »

La désertification et les modifications des modes d'utilisation des terres en zones sèches constituent le principal facteur de perte de la biodiversité, au travers de la surexploitation des populations et de la destruction des habitats. La durée pendant laquelle des conditions croissantes d'aridité se sont mises en place dans ces zones, alliée à une pression anthropique ancienne, a entraîné des processus d'adaptation et d'évolution se traduisant par l'existence de patrimoines génétiques originaux et par la présence d'une mosaïque de foyers d'adaptation et d'évolution. Cette diversité contribue à la résilience des systèmes écologiques en renforçant leurs capacités de récupération après perturbation. Les propriétés éco-physiologiques et génétiques d'adaptation à la sécheresse, que l'on rencontre chez de nombreuses espèces des zones arides, ainsi que la diversité des écosystèmes qui les abritent font de ces zones des centres de ressources précieuses pour des utilisations futures. D'une manière générale, les terres arides n'ont pas bénéficié, jusqu'à ce jour, de toute l'attention nécessaire en ce qui concerne leur biodiversité, sa sauvegarde et son utilisation. Pour certains groupes biologiques

tels que les micro-organismes symbiotiques, les résultats présentés ici sont novateurs et témoignent de l'importance de cette diversité.

La lutte contre la désertification constitue un enjeu majeur, la dégradation qu'elle entraîne étant à l'origine de l'altération de la productivité des terres, base du développement des populations rurales particulièrement dépendantes des ressources renouvelables. Les solutions élaborées pour la lutte contre la désertification reposent sur le contrôle des causes de la dégradation des terres et sur l'amélioration de la gestion des ressources naturelles, grâce notamment à une meilleure connaissance de ces ressources et des processus écologiques qui les régissent. La réhabilitation revêt pour le développement des zones affectées une importance croissante. Face aux échecs de nombreux programmes de reboisement menés à partir d'espèces exotiques, une des solutions semble être la reconstitution de systèmes écologiques simplifiés par le recours à des espèces autochtones. Dans ce cadre, le rôle des légumineuses arbustives locales, améliorantes pour les sols, adaptées aux conditions écologiques locales, est déterminant pour la constitution de systèmes écologiques pluristrates stables et productifs. Leur emploi se heurte malheureusement trop souvent à des connaissances insuffisantes, ou fragmentaires, concernant leur diversité, leur écologie et les techniques de leur multiplication.

Le présent ouvrage porte sur une espèce modèle importante, Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan, de très large distribution et marquant de nombreux écosystèmes arides africains et moyen-orientaux, mais dont les populations sont localement menacées en raison de leur surexploitation. Il constitue, au-delà d'une monographie au sens traditionnel et un peu académique du terme, une synthèse pluridisciplinaire, qui multiplie les angles d'approche pour une meilleure articulation des connaissances. La qualité de cet ouvrage est de présenter des résultats originaux de recherches issus du programme « Réhabilitation des terres dégradées », mené dans un cadre cohérent, utile pour la compréhension et pour l'action. Il constitue une contribution importante pour la connaissance et l'utilisation des espèces locales pour la lutte contre la désertification.

A. CORNET

Président du Comité scientifique français de la désertification

Avant-propos

Cet ouvrage collectif trouve son origine dans le projet TS3-CT92-0047 financé par l'Union européenne dans le cadre de son programme « Sciences et Techniques au Service du Développement ».

Le projet intitulé « Réhabilitation des terres dégradées au nord et au sud du Sahara. Utilisation des légumineuses pérennes et des micro-organismes associés pour le rétablissement de formations pluristrates », coordonné par l'IRD, a été conjointement mis en œuvre par différentes institutions de recherche et d'enseignement des pays du Sud et du Nord :

- l'Institut des régions arides (Médenine, Tunisie);
- la Direction des recherches sur les productions forestières de l'Institut sénégalais de recherches agricoles (DRPF/Isra) et l'université C. A. Diop (UCAD, Dakar, Sénégal);
- l'université de Tuscia (Viterbo, Italie);
- le Centre d'écologie fonctionnelle et évolutive du CNRS (Montpellier, France) ;
- l'Institut de recherche pour le développement (France).

Dans ses grandes lignes, ce projet se proposait : (1) de comparer les caractéristiques des micro-organismes et d'acquérir une bonne connaissance du fonctionnement de la symbiose dans son milieu naturel ; (2) de clarifier les interactions biochimiques de la rhizosphère ; (3) de déterminer les mécanismes d'adaptation à l'aridité des plantes hôtes et des micro-organismes symbiotiques.

Les travaux réalisés dans deux contextes écologiques caractérisés par l'aridité mais présentant des spécificités pour ce qui concerne les conditions de sa manifestation ont porté :

- sur l'étude de la diversité, orientée, d'une part, sur la place des légumineuses pérennes herbacées et ligneuses dans les systèmes écologiques et de production et, d'autre part, sur l'analyse de la diversité des micro-organismes en fonction des espèces et des biotopes;
- sur les aspects fonctionnels fondés sur la recherche des caractères d'adaptation à l'aridité. Dans différentes conditions expérimentales (in vitro, en conditions contrôlées et in situ), les caractéristiques biochimiques, physiologiques et écophysiologiques des micro-organismes symbiotiques et des plantes hôtes ont été déterminées pour mettre en évidence leurs réponses adaptatives à l'aridité;
- sur l'application à la réhabilitation des terres par le rétablissement de formations pluristrates, afin de réduire les risques affectant la production des espaces pastoraux et agroforestiers en augmentant leur stabilité et leur résilience.

Les recherches effectuées dans le cadre de ce projet ont déjà fait l'objet de nombreux rapports, de thèses, et de publications plus formelles à l'échelle disciplinaire. Cependant, pour donner une autre dimension à la valorisation et mettre en exergue la synergie des recherches entreprises par les différentes disciplines, nous avions convenu, à l'issue du projet, d'approfondir certains points à travers une valorisation commune de ces travaux.

Le présent ouvrage collectif constitue le fruit de ce travail. Il porte plus particulièrement sur Acacia tortilis subsp. raddiana, modèle dont l'intérêt réside dans sa large distribution géographique, notamment sa présence au nord et au sud du Sahara, dans ses capacités de combiner une grande résistance à la sécheresse et un pouvoir fixateur d'azote atmosphérique par association symbiotique. Ce taxon présente par ailleurs un intérêt économique certain, de par les multiples usages qu'en ont les populations et par son utilisation dans les opérations de reboisement et d'agroforesterie. Signalons enfin qu'Acacia raddiana est l'un des 81 taxons considérés par la FAO (1986) comme menacés d'extinction dans leur aire de répartition, en raison de leur exploitation excessive.

Malgré son importance, ce taxon n'a pas fait l'objet de synthèse spécifique, bien que dans la bibliographie annotée de FAGG et GREAVES (1990) et l'ouvrage de CAMPA et al. (1998), certains éléments le concernent.

Les quinze contributions que comporte cet ouvrage reflètent les résultats originaux des recherches effectuées dans le cadre du projet évoqué plus haut. Ces contributions sont réparties en cinq parties ; la structuration de l'ouvrage répond à un souhait de cohérence et de progression dans la découverte de ce taxon :

- la première partie traite de la distribution circumsaharienne et moyen-orientale de ce taxon, de son écologie (en y incluant quelques aspects relatifs à la croissance et à la production) et de ses nombreux usages. La diversité génétique des populations est également traitée ici ainsi que les bénéfices qu'apporte la technique de microbouturage, en particulier pour la production de plants, destinés à l'évaluation génétique;

- la seconde partie aborde les aspects du fonctionnement hydrique de ce taxon aux différents niveaux d'organisation que sont l'écosystème (régime hydrique), la population (phénologie) et l'individu (transpiration) ;
- la troisième partie analyse les interactions d'Acacia raddiana avec les microorganismes associés. Y sont rassemblés les résultats des travaux sur la diversité de ces micro-organismes (bactéries fixatrices d'azote et champignons), et les données relatives au métabolisme des éléments minéraux (azote et phosphore) découlant de ces associations :
- les divers aspects des interactions entre ce taxon (et les micro-organismes associés) et le milieu sont décrits dans une quatrième partie. Les deux chapitres y afférent traitent des effets de la rhizosphère sur le milieu édaphique et des conséquences de ces modifications sur la structure et le fonctionnement de la communauté végétale herbacée;
- la cinquième et dernière partie rassemble les connaissances relatives aux aspects fondamentaux (conditions de germination) et appliqués (inventaire et description des insectes séminivores, techniques de multiplication en pépinière) de la propagation de ce taxon. De telles informations se révèlent fort utiles lors du recours à ce taxon dans les opérations de réhabilitation.

Dans l'introduction qui suit, J. Vassal expose clairement la signification de la séquence des travaux présentés dans cet ouvrage en décrivant, en particulier, la cohérence scientifique de l'ordre de présentation des parties ainsi que des chapitres qu'elles contiennent.

M. GROUZIS et E. LE FLOC'H

Références bibliographiques

CAMPA C., GRIGNON C., GUEYE M., HAMON S. (éd.),

1998 – L'acacia au Sénégal. Paris, Orstom, coll. Colloques et séminaires, 476 p.

FAGG C.W., GREAVES A.,

1990 – Acacia tortilis (1925-1988). Annoted bibliography n° F41, Wallingford C.A.B. International, 38 p.

FAO,

1986 – « Acacia tortilis subsp. raddiana (Savi) Brenan ». In FAO (éd.): Databook on endangered tree and shrub species and provenances, FAO Forestry Paper, 77: 42-47.

GROUZIS M. (éd.),

1997 – Réhabilitation des terres dégradées au nord et au sud du Sahara. Utilisation de légumineuses pérennes et des microorganismes associés pour l'établissement des formations pluristrates. Contrat Union européenne STD3, TS3*CT92-0047. Rapport final. Rapport scientifique, 166 p. Rapport final. Résumé et publications, 14 p.

Introduction

L'ouvrage collectif publié par M. Grouzis et E. Le Floc'h s'inscrit dans un cadre de recherches pluridisciplinaires ayant pour objectif de contribuer à la restauration des écosystèmes arides et semi-arides dégradés du pourtour saharien. Le modèle d'étude principal de ces travaux est l'un des acacias les plus xérophiles du continent africain, bien représenté au nord et au sud du désert saharien : Acacia tortilis (Forssk.) Hayne subspecies raddiana (Savi) Brenan. Les différents thèmes abordés apportent de nouveaux éléments en faveur d'une meilleure exploitation de cette essence dans des projets de reforestation et réhabilitation de formations pluristrates.

Les acacias africains bénéficient, on le sait, d'une attention toute particulière des chercheurs et décideurs, eu égard au rôle qu'ils peuvent jouer sur le plan écologique (aménagement et lutte contre la désertification) et économique (ressources agroforestières, production de substances naturelles).

Parmi ceux-ci, deux espèces, Acacia (Faidherbia) albida et Acacia senegal, ont bénéficié d'une attention plus particulière. Les diverses recherches qu'elles ont suscitées ont été concrétisées, au Sahel, par la mise en œuvre de programmes d'aménagement sylvo-pastoral et agroforestier ou de plantations expérimentales, voire industrielles. Faidherbia albida est parfois considéré comme le « miracle du Sahel » en raison de ses capacités à stabiliser et améliorer les sols (fixation d'azote) et à produire d'« importantes » quantités de fourrage. Acacia senegal est la principale source mondiale de gomme arabique, produit aux multiples usages et source de profits pour de nombreuses populations sahéliennes. Des ouvrages, thèses, articles divers et colloques témoignent de l'importante avancée

des connaissances sur ces deux taxons d'intérêt majeur dans les actions de lutte contre la désertification et le sous-développement. Acacia tortilis subsp. raddiana n'a pas été jusqu'ici l'objet d'un aussi grand intérêt, malgré son aptitude à coloniser des milieux particulièrement secs et défavorisés. Il est capable, comme quelques autres ligneux auxquels il s'associe fréquemment (Balanites aegyptiaca, Acacia ehrenbergiana...), de survivre dans des zones à pluviométrie moyenne annuelle inférieure à 100 mm. Dans son aire géographique africaine, il bénéficie de deux types de bioclimats : méditerranéen aride/semi-aride au nord, et tropical aride au sud (Le Floc'h et Grouzis). Sa distribution clairsemée, sa silhouette souvent en parasol ou son port rabougri font de lui l'un des éléments typiques et originaux des paysages circumsahariens, nord-sahéliens et moyen-orientaux. C'est le talh (ou talha) des Arabes, le seing des Ouolofs, l'arbre « mythique » du Ténéré, hélas disparu, autrefois repère des caravaniers. L'espèce a subsisté, cà et là, à travers le Sahara dans les lits d'oued ou les dépressions. On la trouve soit dans des steppes, surtout au nord du Sahara, soit dans des savanes, plus spécialement au sud du Sahara. Lorsque l'arbre est protégé et dispose de réserves hydriques suffisantes, il peut atteindre une dizaine de mètres de hauteur, voire plus. Il présente plusieurs intérêts pour les populations locales, qui l'exploitent comme source de fourrage, de bois d'œuvre et de feu, ou de médicaments traditionnels (Le Floc'h et Grouzis). Il est très aisément reconnaissable à ses épines géminées défensives, longues et droites voire crochues (à valeur de stipules modifiées), à ses gousses plus ou moins spiralées et à ses fleurs blanchâtres regroupées en capitules. Sur le plan systématique, il appartient au sous-genre Acacia (ré-évaluation de la série des Gummiferae Bentham), dont l'une des caractéristiques est la présence d'épines stipulaires. Dans ce sous-genre, il s'associe à différentes espèces africaines très communes comme A. seyal, A. nilotica, A. sieberana. Ce groupe est bien distinct d'un autre ensemble d'Acacias africains, le sous-genre Aculeiferum Vas. (ré-évaluation de la série Vulgares Bentham), où la spinescence est le fait d'aiguillons infrastipulaires ou épars. Ce deuxième groupe rassemble des espèces comme A. senegal, A. polyacantha, A. laeta, A. ataxacantha.

Brenan¹ a fait une révision du complexe A. raddiana - A. tortilis - A. heteracantha - A. spirocarpa et distingué quatre sous-espèces subordonnées à l'espèce Acacia tortilis. Cette conception a été largement adoptée par les spécialistes (Le Floc'h et Grouzis)². Brenan souhaitait de « nouvelles preuves » à l'appui de cette réorganisation taxonomique, d'où l'intérêt des recherches actuelles dans le domaine de la génétique. Cependant, celles-ci demeurent encore partielles (Borgel et al.). Un vaste champ d'investigation reste donc ouvert dans ce complexe systématique polyploïde à large distribution. On dispose de quelques données sur la variabilité morphologique dans la sous-espèce raddiana³. La

^{1.} Kew Bulletin, 12:68-89 (1957).

^{2.} Brenan a distingué deux variétés (raddiana et pubescens) dans la sous-espèce raddiana selon le degré de pilosité de la gousse. La difficulté d'appréciation ou d'accès à ce caractère explique que les auteurs de cet ouvrage ne mentionnent pas les variétés étudiées. Acacia tortilis subsp. raddiana a la plus large distribution en Afrique. Les trois autres sous-espèces ont des aires plus limitées et faiblement interférentes du sud à l'est et au nord-est de l'Afrique.

^{3.} Voir par exemple les observations de Th. Monod sur des « anomalies » de port et d'enroulement des gousses dans des populations du désert libyque (Bull. Int. Group Study Mimosoideae, 15 : 86-87, 1987).

variabilité génétique de ce taxon a été quantifiée, mais il reste encore à la tester sur l'ensemble de son aire géographique dans un nombre suffisant de sites au nord et au sud du Sahara. Les clones pourront constituer un excellent matériel de travail. Les techniques de microbouturage et d'embryogénèse somatique sont en effet bien maîtrisées pour ce taxon (Borgel et al.).

Les recherches sur le thème de « l'eau » constituent logiquement une part importante de l'ouvrage, étant donné le « tempérament » très xérophile d'Acacia tortilis subsp. raddiana.

Cet acacia est soumis à deux régimes pluviométriques distincts selon sa situation géographique : des pluies en saison chaude au sud (bioclimat tropical), en saison froide au nord (bioclimat méditerranéen). Il convenait donc d'étudier le comportement des populations de « raddiana » face aux contraintes d'approvisionnement en eau dans ces deux situations (Pontanier et al.). Les premiers résultats de ces travaux permettent d'apprécier des différences de stratification des réserves en eau selon le site, jusqu'à deux mètres de profondeur, durant les périodes de pluie. Il reste nécessairement des incertitudes quant à la part que représente, pour l'équilibre hydrique de l'arbre, un approvisionnement en eau difficilement quantifiable au niveau des nappes profondes. On sait en effet que le système racinaire pivotant est souvent particulièrement développé en profondeur chez les acacias⁴.

Les principales phases phénologiques, dans les populations tunisiennes, se réalisent en saison sèche et se calent ainsi, dans le calendrier, sur le rythme des populations sénégalaises qui bénéficient alors de la saison des pluies (Diouf et Zaafouri) : s'agit-il d'une réponse d'ordre strictement génétique des populations du nord ? Sinon, les réserves phréatiques profondes du Nord-Sahara faussent-elles les résultats ? On rappellera à ce propos la controverse relative au rythme phénologique inversé d'Acacia (Faidherbia) albida⁵.

En rapport direct avec l'expression du rythme phénologique foliaire, il y avait lieu de s'interroger aussi, dans le cadre de cette étude, sur le cycle saisonnier de la transpiration (Do et Rocheteau). Les mesures des flux de sève brute permettent une meilleure connaissance du fonctionnement hydrique de l'arbre, d'où d'intéressantes perspectives d'amélioration des capacités de production des peuplements d'A. raddiana dans diverses conditions climatiques. Cette espèce étant confrontée à des situations de stress hydrique, des recherches fondamentales sur sa résistance à la pénurie d'eau s'avèrent indispensables.

Acacia raddiana, au-delà de son aptitude à supporter des conditions particulièrement rudes sur le plan hydrique, est, comme d'autres espèces du genre Acacia, un excellent agent de fixation et d'amélioration des sols dégradés. Un important chapitre de cet ouvrage traite donc du rôle des micro-organismes symbio-

^{4.} On rappellera, pour l'anecdote, la mise au jour, lors du percement du canal de Suez, de racines profondes atteignant une cinquantaine de mètres de longueur, pour une part attribuées à des acacias.

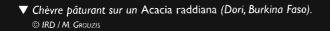
^{5.} R. Portères (Sciences et Nature, 19 : 19-24, 1957) et J. Lebrun (Collectanea Botanica, VII : 625-636, 1968) plaidant pour l'influence asphyxique des sols - J. L. Trochain (Ann. Sc. Univ. Besançon, 3 (6) : 583-589, 1969) avançant une hypothèse paléoclímatique - A. Nongonierma (Bull. IFAN 41, 4 : 723-760, 1979) invoquant un déterminisme endogène propre à la génétique de l'espèce.

tiques dans la réhabilitation des terres arides circumsahariennes. Les différents travaux sur les associations *Rhizobium* sp./champignons endomycorhiziens/*Acacia tortilis* subsp. *raddiana* montrent :

- la diversité taxonomique des souches bactériennes, à croissance rapide (Rhizobium, Sinorhizobium, Mesorhizobium...), identifiées pour l'ensemble de l'aire du taxon (de Lajudie et al.);
- l'influence des saisons sur la nodulation par les rhizobiums, notamment la corrélation entre l'importance de la biomasse racinaire et l'humidité du sol (Diouf et al.);
- la résistance élevée des souches bactériennes de Rhizobium sp. à des températures et concentrations en sel élevées ainsi qu'à un stress hydrique, caractéristiques biologiques favorisant leur survie dans des sols arides inhospitaliers (Cacciari et al.);
- le haut potentiel fixateur d'azote chez A. tortilis subsp. raddiana, plus élevé que dans des espèces comme Faidherbia albida ou Acacia senegal (Gueye et Ndoye);
- une diminution de l'infection endomycorhizienne dans les terres dégradées et, d'autre part, une meilleure réponse à l'inoculation bactérienne après inoculation supplémentaire du champignon arbusculaire (Diagne et Ingleby).

Acacia tortilis subsp. raddiana est donc un taxon autochtone particulièrement précieux dans des régions d'Afrique défavorisées sur le plan écologique (déforestation, désertification et sécheresse) et économique. Un « effet rhizosphérique » de l'arbre sur les paramètres biochimiques et microbiologiques du sol, susceptible d'être utile pour la réhabilitation des milieux dégradés, a été mis en évidence (Grego et al.). Son influence sur le développement de la strate herbacée (aussi bien sur le plan diversité floristique que phytomasse) est avérée. L'arbre augmente les disponibilités en eau du sol tout en le fertilisant (Grouzis et Akpo).

L'espèce est ainsi fortement recommandable pour la reconstitution et l'enrichissement des systèmes agroforestiers. Elle est pourtant sous-représentée dans les programmes de reforestation. En amont de la mise en œuvre de plantations en régie ou de projets de reboisement, qui pourraient notamment motiver les populations villageoises, il est indispensable de maîtriser les technologies de germination (levée de l'inhibition tégumentaire et conditions optimales de germination, viabilité et conservation des graines, dégâts provoqués par les insectes consommateurs de graines, Delobel et al., Danthu et al.) ainsi que les méthodes d'élevage en pépinière et d'entretien des plantations (fertilisation et travail du sol, traitements divers, Roussel).


Au-delà des méthodes « classiques » de production de plants, l'apport complémentaire des biotechnologies via la production de vitroplants, désormais mise au point (microboutures et embryons somatiques), peut théoriquement permettre la création de vergers grainiers sélectionnés et une propagation clonale. Borgel et al. font justement remarquer les limites d'exploitation d'un tel matériel juvénile, moins apte que celui issu de graines dont le système racinaire pivotant et robuste est d'emblée mieux adapté aux conditions de survie immédiate en zones arides.

Au total, l'ouvrage collectif publié par M. Grouzis et E. Le Floc'h contient les éléments d'une véritable monographie d'Acacia tortilis subsp. raddiana. Il illustre le fait qu'un taxon autochtone, encore trop négligé, peut contribuer efficacement à une meilleure lutte contre la désertification et à l'amélioration du potentiel sylvo-pastoral circumsaharien. Même si les recherches doivent être encore poursuivies dans plusieurs des domaines abordés, il faut souhaiter que l'importante somme de connaissances déjà rassemblées sur Acacia tortilis subsp. raddiana suscite la mise en œuvre de programmes originaux de reforestation et de restauration des milieux en collaboration avec les populations locales.

J. VASSAL

Professeur honoraire, université Paul-Sabatier, Toulouse 3, allée de Bufevent, 31320 Auzeville-Tolosane

Acacia raddiana, un arbre des zones arides à usages multiples

E. LE FLOC'H M. GROUZIS

Résumé

Ce n'est que depuis 1957 que la définition taxonomique et nomenclaturale de ce taxon est enfin stabilisée sous la combinaison *Acacia tortilis* (Forssk.) Hayne subsp. *raddiana* (Savi) Brenan. Il s'agit là, dans le genre *Acacia*, de l'un des taxons africains les plus étudiés, et ceci est probablement dû à sa très large distribution.

Comme d'autres taxons africains du même genre, Acacia tortilis subsp. raddiana présente en effet une aire très étendue englobant les zones arides du nord et du sud du Sahara et se prolongeant aussi à l'est sur une grande partie du Moyen-Orient. Les autres sous-espèces de la même espèce ont des aires plus centrées sur l'Afrique de l'Est et le Moyen-Orient (A. tortilis subsp. tortilis), l'Afrique de l'Est et les pays de la côte orientale de l'Afrique et jusqu'en Namibie (A. tortilis subsp. spirocarpa), ou encore au sud du continent (A. tortilis subsp. heteracantha).

Le taxon fait défaut dans les régions hyperarides de son aire, en étant cependant présent depuis le niveau de la mer (au Sénégal par exemple) jusqu'à 2 100 m dans l'Ahaggar. À cette altitude cependant les individus deviennent rabougris. Il est fréquent dans les zones les plus sèches le long des cours d'eau temporaires, sur des sols à la fois légers et bien drainés. Du point de vue édaphique, il faut signaler que, malgré une préférence marquée pour les sols drainants, le taxon existe cependant en quelques endroits dans des terrains salés littoraux, à Djibouti par exemple.

Quoique n'ayant pas d'exploitation industrielle, il faut reconnaître à ce taxon de nombreux usages locaux, ne serait-ce que du fait de son intérêt dans l'alimentation animale et occasionnellement humaine (disettes). Sur le plan de la médecine traditionnelle, Acacia tortilis subsp. raddiana est en particulier un cicatrisant des plaies réputé efficace. De nombreux autres usages lui sont reconnus qui parfois ne correspondent qu'à un emploi très localisé. Son bois constitue un combustible recherché (bois de chauffe et charbon de bois) et un matériau très apprécié dans l'artisanat (mortiers, plats, etc.).

Malgré les divers travaux dont il a fait l'objet, il reste beaucoup à découvrir de ce taxon.

Mots-clés :

ACACIA TORTILIS, ACACIA RADDIANA, AIRE DE RÉPARTITION, SAHARA, AFRIQUE, MOYEN-ORIENT,
USAGE MÉDICINAL, ALIMENTATION HUMAINE, ALIMENTATION ANIMALE,
COMBUSTIBLE, REFORESTATION.

Abstract

It has been since 1957 only that the taxonomic and nomenclature definition of this taxon has finally been stabilised under Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan combination. This is, in the Acacia type, one of the most studied African taxa and this is probably due to its very widespread distribution.

Like other African taxa of the same type, the Acacia tortilis subsp. raddiana indeed covers a very wide area which includes the arid areas in North and South Sahara and stretches across the East over a large part of the Middle-East. The other subspecies in the same species are more focused in East Africa and the Middle East (A. tortilis subsp. tortilis, East Africa and the countries on the East coast of Africa and down to Namibia (A. tortilis subsp. spirocarpa), or in the South of the continent (A. tortilis subsp. heteracantha).

The taxon is not found in hyper-arid regions of the area its covers whereas it can be found in some areas ranging from sea level parts (e.g. Senegal) up to 2 100 m high parts in the Ahaggar. At this altitude, however, the individuals become stunted. It is frequent in the most dry areas along temporary rivers on both light and well drained soils. From the edaphic point of view, it has to be pointed out that, in spite of marked preference for draining soils, the taxon nevertheless exists in some places on salt coastal land, e.g. Djibouti.

Though it is not processed industrially, it has to be acknowledged that this taxon is locally used not only for the interest it represents as a fodder but occasionally for human consumption (famine) too. In traditional medicine Acacia tortilis subsp. raddiana is particularly known to be an efficient wound healer. It is granted many other uses which sometimes correspond to a very localised use only. There is a keen demand on the wood as fuel (fire wood and charcoal) and it is a well appreciated material in handicraft (mortars, plates, etc).

In spite of various works of which it is the subject, there remains a great deal to discover on this taxon.

Keywords:

ACACIA TORTILIS, ACACIA RADDIANA, DISTRIBUTION AREA, SAHARA, AFRICA, MIDDLE EAST, MEDICINAL USE, HUMAN CONSUMPTION, FODDER, FUEL, REFORESTATION.

Un arbre mythique

Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan présente un grand intérêt économique, peu à peu redécouvert alors que régressent les peuplements et qu'apparaissent les difficultés de les reconstituer. Il s'agit de fait d'un arbre quasiment mythique pour les voyageurs sahariens. On se souvient, par exemple, de la riche littérature relative à l'arbre du Ténéré et à sa destruction (LESOURD, 1959; CORNET, 1960; MAUNY, 1960; DAUMONT, 1957; NABAL, 1973; Anonyme, 1974, etc.)

L'arbre du Ténéré est mort...

« L'arbre peut-être le plus célèbre du Globe, en tout cas probablement le seul qui figure nommément, en tant qu'individu végétal, sur la carte internationale du monde au 1/1 000 000, l'arbre du Ténéré vient de mourir... Sur la piste un arbre, un acacia épineux appartenant selon toute probabilité à l'espèce Acacia raddiana appelée « Tafagag » ou « Afagag » en dialecte tamacheck, se voyait de loin avec ses deux troncs distincts et sa forme en parasol bien que sa hauteur ne dépassât pas 3 m... Si l'arbre du Ténéré était le seul dans le site considéré, il y a dans la région d'autres arbustes appartenant à l'espèce Acacia raddiana et certains ont pensé qu'il serait le survivant de tout un groupe ayant subsisté sur l'emplacement d'un ancien oued. » (Anonyme, 1974)

Le célèbre « arbre du Ténéré » appartenait bien à cette sous-espèce. Les deux troncs de cet individu isolé se distinguent parfaitement sur les clichés illustrant l'article de DAUMONT (1957). Il était probablement très âgé, peut-être sénescent, mais toujours est-il qu'un camion se rendant à Bilma l'a détruit.

C'est probablement à propos du même taxon que P. Loti, à la suite de son séjour à Obock (république de Djibouti), écrivait en 1896 dans *Propos d'exil* : « ...et puis de distance en distance, posés comme pour faire jardin anglais, de ces chétifs arbustes en forme d'ombelle, au feuillage terne et clair, comme nous en avions déjà vu du large, espèces de parasols d'épines penchés à droite ou à gauche de leur tronc grêle : c'est un mimosa triste, l'éternel mimosa des solitudes africaines, le même qui croît dans toutes les régions arides de l'intérieur – jusqu'à là-bas, de l'autre côté des grands déserts, dans les sables du Sénégal ; un mimosa qui ne produit rien, ne donne même pas d'ombre... »

Il s'était, malgré son dédain apparent, bien intéressé à ce taxon, dont il esquisse à la fois la description morphologique, l'écologie, la distribution, même s'il méconnaît

la richesse de ses usages. Il reste évident que, dans cette partie de l'Afrique, une confusion était toujours possible avec la sous-espèce voisine *Acacia tortilis* subsp. *tortilis*.

Mais justement, qu'en est-il exactement sur le plan taxonomique ?

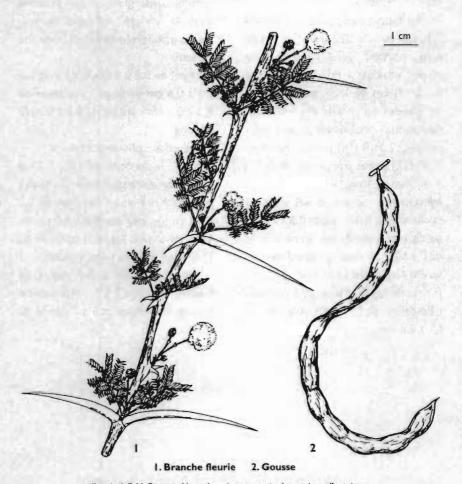
Acacia tortilis subsp. raddiana: taxonomie et nomenclature

Dès 1775, Forsskal avait distingué le *Mimosa tortilis*, mais il fallut attendre 1830 pour que Savi propose de distinguer une espèce qu'il nomme *Acacia raddiana* et que Brenan établira au rang de sous-espèce de *Acacia tortilis* en 1957.

C'est à VASSAL (1972) que l'on doit la plus récente révision des séries créées par Bentham en 1842. L'on retiendra de cette révision que l'espèce Acacia tortilis relève du sous-genre Acacia, où sont regroupées les espèces à épines stipulaires. Les travaux de Vassal (VASSAL, 1981, 1998; VASSAL et LESCANNE, 1976; VASSAL et al., 1977; VASSAL et DIONE, 1993) ont, par ailleurs, beaucoup contribué à la connaissance du genre Acacia dans ses divers aspects (anatomie, cytologie, distribution, usages, etc.).

Nous nous reporterons, pour une taxonomie et une nomenclature complètes de l'espèce Acacia tortilis, à l'étude de Ross (1979) intitulée : A conspectus of the African Acacia species. Cet auteur distingue pour la seule espèce Acacia tortilis 4 sous-espèces sur les caractères suivants :

- ☐ Gousses glabres ou presque glabres, non glanduleuses :
 - \checkmark Jeunes rameaux, pétioles et rachis foliaires glabres ou sub-glabres
 - → subsp. raddiana var. raddiana
 - ✓ Jeunes rameaux, pétioles et rachis foliaires brièvement pubescents


 → subsp. heteracantha
- ☐ Gousses aplaties de pubérulentes à tomenteuses ou pubescentes, glanduleuses ou non
 - ✓ Gousses larges de 3 à 5 mm, brièvement pubescentes, non glanduleuses

 → subsp. tortilis
 - √ Gousses larges de 6 à 13 mm, aplaties, pubérulentes à tomenteuses ou pubescentes :
 - ✓ Gousses aplaties, pubérulentes, non glanduleuses, larges de 7 à 9 mm

 → subsp. raddiana var. pubescens
 - ✓ Gousses tomenteuses ou pubescentes, munies de poils dressés ou recourbés, parsemées de nombreuses glandes rouge sombre nettement visibles à la loupe, larges de 6 à 9 (13) mm :

Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan

J. VASSAL

d'après J. P. M. Brenan, Manuel sur la taxonomie des espèces d'acacias Rome, FAO, 1983 : 41.

Arbre, arbuste ou buisson de 1,5 à 18 (21) m de hauteur.

Port fréquent en parasol : cime généralement aplatie et étalée, irrégulièrement arrondie dans la variété raddiana.

Écorce le plus souvent rugueuse fissurée, grise, brun rougeâtre à noirâtre. Jeunes rameaux gris à brun rougeâtre ou pourpre foncé.

Épines stipulaires par paires, de forme et longueur variables sur la même

branche, courtes et crochues, atteignant 5 mm de long ou longues, élancées et blanches de 1,2 à 8 (10) cm de long.

Feuilles bipennées, glabres ou pubescentes - pétiole: 0,2-0,8 (1,4) cm de long portant généralement une glande adaxiale - rachis: court, de 0,2-2 (4) cm de long, souvent muni de glandes au niveau des jonctions des pennes proximales et distales - pennes: 2 à 10 (14) paires - folioles: 6-20 (22) paires par penne, de 0, 5 à 4 (6) mm de long.

Inflorescences: en glomérules solitaires (axillaires) ou fasciculés, de 0,5 à 1,1 cm de diamètre, portés par un pédoncule de 0,4 à 2,5 cm de long muni d'un involucelle dans le tiers inférieur.

Fleurs : de couleur blanche à jaunâtre pâle-calice : de l à 2 mm - corolle : de l,5 à 2,6 mm.

Gousses: contournées à spiralées, de 0,6 à 1,3 cm de large, tardivement déhiscentes ou indéhiscentes, non glanduleuses, glabres ou presque dans la variété raddiana, tomenteuses à pubérulentes dans la variété tomentosa.

Graines: de 0,4 à 0,8 cm de long sur 0,3 à 0,6 cm de large - épaisseur de 0,2 à 0,3 cm - aréole de 0,3 à 0,6 cm de long.

Germination: phanérocotylaire.

Plantule: hypocotyle de 1,0 à 2,2 cm de longueur - cotylédons: auricules pétiolés à nervation flabellée, de 0,9 à 1,2 cm de long sur 0,7 à 1,0 cm de large, persistant jusqu'au stade 3^e ou 4^e feuille - feuilles primordiales:

I^{re} feuille pennée à 5-7 paires de folioles - feuilles 2 à 5 : bipennées à I paire de pennes et 5 à 7 paires de folioles.

 Gousses densément tomenteuses ou pubescentes, poils surtout courts inférieurs à 1 mm et avec parfois la présence de rares poils longs

→ subsp. spirocarpa var. spirocarpa

 Gousses densément velues de poils blanchâtres et dressés de 1 à 3 mm de long

→ subsp. spirocarpa var. crinita

En outre, il faut noter que Boulos (1995) a fait d'Acacia campoptila Schweinf. une cinquième sous-espèce d'Acacia tortilis sous la combinaison A. tortilis subsp. campoptila (Schweinf.) Boulos. Il s'agit d'un taxon endémique du Yémen.

Des points de vue taxonomique et nomenclatural, la sous-espèce Acacia tortilis subsp. raddiana peut, sans entrer dans trop de détails, être renseignée comme suit :

Acacia tortilis (Forssk.) Hayne, Arzneyk. Geb. Gewächse 10, t. 31 (1827)

synonyme: Mimosa tortilis Forssk. Fl. Aegypt.-Arab. cxxiii, 176 (1775)

subsp. raddiana (Savi) Brenan

synonyme: - Acacia raddiana Savi, Alc. Acacie Egiz. I (1830)

var. raddiana

synonymes: - Acacia tortilis var. lenticellosa Chiov., Fl. Somalia 2:197 (1932)

- Acacia tortilis forma raddiana (Savi) Roberty, Candollea II:

143 (1948)

var. pubescens A. Chev., Bull. Soc. Bot. Fr. 74: 960 (1927)

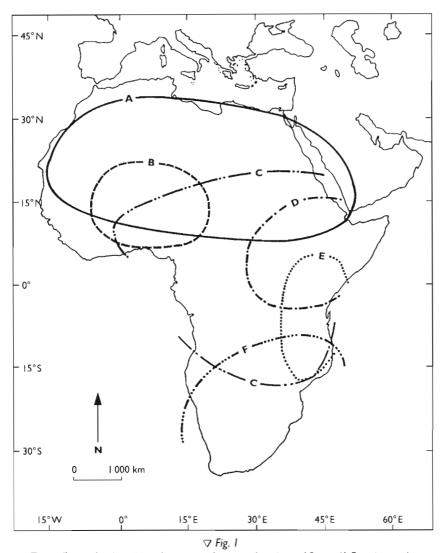
synonymes: - Acacia fasciculata var. pubescens (A. Chev.) A. Chev. Rev. Bot. Appl. Agric. Trop. 8: 127 (1928)

- Acacia tortilis var. pubescens Aylmer ex Burtt Davy, Kew Bull. 1930 : 404 (1930), nom. Illegit.
- Acacia raddiana var. pubescens (A. Chev.) A.F. Hill, Bot. Mus. Leafl. Harv. Univ. 8: 103 (1940).

En résumé, le taxon Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan admet deux variétés. La variété raddiana est la plus répandue, alors que la variété pubescens, plus localisée, n'est de fait connue que sur la lisière sud de l'aire de distribution générale de la sous-espèce.

Il nous paraît également important de situer ce taxon, sur le plan biogéographique, relativement aux 155 taxons spontanés du genre *Acacia*, reconnus par LOCK (1989) en Afrique.

Diversité et répartition des acacias africains


Il est possible à partir du travail de LOCK (1989) de distinguer en Afrique trois grands ensembles relatifs à la richesse taxonomique du genre Acacia.

- Le premier ensemble, grossièrement délimité par les frontières ouest du Zaïre et du Soudan, engloberait donc toute l'Afrique de l'Est et méridionale. La Tanzanie est le pays le plus riche en taxons du genre *Acacia* avec 70 taxons (espèces et sous-espèces). Les pays au voisinage de la Tanzanie (Éthiopie, Kenya) et l'Afrique méridionale (Afrique du Sud) sont également très riches avec plus de 40 taxons par pays. Les taxons du genre *Acacia* sont encore nombreux (aux alentours de 30 par pays) au Mozambique, au Zimbabwe, en Somalie, au Soudan, au Botswana, en Angola, en Ouganda, en Zambie, au Zaïre et en Namibie.
- Dans le second ensemble, cette richesse décroît, plus ou moins rapidement, quand on s'éloigne de l'Afrique de l'Est vers l'Afrique de l'Ouest. La limite nord de cet ensemble serait constituée par les frontières nord du Sénégal, du Mali, du Niger, du Tchad et la zone tropicale du sud de l'Égypte. Il est possible de distinguer deux sous-ensembles. En effet, la zone côtière forestière s'étendant de la Gambie au Congo est relativement pauvre en taxons du genre *Acacia* alors que la zone de savanes, plus au nord, du Sénégal au Tchad et à la République centrafricaine, est nettement plus riche.
- Le troisième ensemble, c'est-à-dire le nord de l'Afrique, est le plus pauvre avec au maximum cinq taxons. Il est à noter que, dans cet ensemble, la Tunisie ne recèle qu'un seul taxon spontané, à savoir A. tortilis subsp. raddiana.

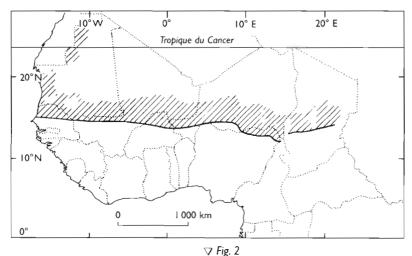
Sur la base de l'analyse des données rapportées par LOCK (1989), SANUSI (1989) indique que : Acacia ataxacantha DC., A. dudgeoni Craib ex Holl., A. macrostachya Reichenb. ex DC., A. polyacantha Willd., A. senegal (L.) Willd., A. seyal Del. sont les espèces les plus largement distribuées en Afrique tropicale de l'Ouest. Faidherbia albida (Del.) A. Chev. (syn. Acacia albida Del.) présente sensiblement la même répartition géographique.

En ce qui concerne la distribution en Afrique des taxons spontanés relevant du genre nous distinguerons cinq grands types d'aires présentées ici en allant du nord au sud de l'Afrique (fig. I). Bien entendu, ces informations ne représentent aucun absolu et les ensembles constitués ici ne présentent pas de limites franches. Les aires des espèces sont, dans le détail, plus intriquées que ne laisse présager cette typologie. Notre souhait est donc, même si l'exercice s'avère délicat, d'établir une vision synthétique de la distribution géographique des taxons et d'en montrer les cohérences.

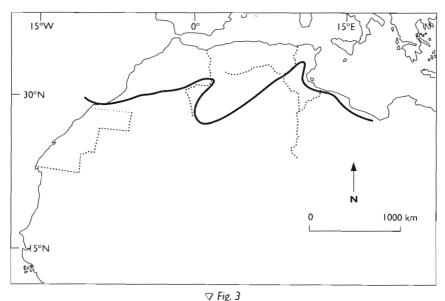
- Un premier groupe (aire A de la figure I) de taxons présente des aires très étendues englobant à la fois les zones arides au nord (de la Mauritanie à l'Égypte) et au sud (Mali, Niger, Nigeria, Tchad, Soudan, Éthiopie) du Sahara et s'étendant également sur le Moyen-Orient. C'est à ce groupe qu'appartiennent Acacia tortilis subsp. raddiana, concerné par cette étude, mais également : Acacia ehrenbergiana Hayne, A. laeta R. Br. ex Benth., A. nilotica (L.) Willd. ex Del. subsp. nilotica et subsp. tomentosa (Benth.) Brenan. Plus particulièrement, les deux premiers taxons cités ici ont des aires dont l'extension méridionale est moins étendue que celles des autres taxons du même groupe.
- Le second groupe (aire B de la figure 1) concerne des taxons d'aires plus restreintes et assez strictement centrées sur l'Afrique de l'Ouest (Nigeria, Niger, Togo, Tchad, Mali, Ghana). De ce groupe relèvent entre autres taxons : Acacia dudgeoni Craib.

Types d'aires de répartition des taxons du genre Acacia en Afrique (A-F : voir texte).

ex Hell., A. gourmaensis A. Chev., A. macrostachya Reichenb. ex DC. et A. nilotica subsp. adstringens (Schumm. & Thonn.) Roberty, etc. Ce dernier taxon présente une aire en réalité plus étendue que celle constituée par l'enveloppe tracée sur cette figure.


• Un troisième groupe (aire C de la figure I) rassemble des taxons de large extension et de répartition essentiellement centrée sur l'Afrique centrale et de l'Est: Côte d'Ivoire, Nigeria, Cameroun, Soudan, Éthiopie, Tanzanie, Kenya, Ouganda, Mozambique, Zimbabwe, Zaïre, Angola. Parmi les taxons les plus marquants de ce groupe, signalons: Acacia ataxacantha DC., A. hockii De Wild., A. polyacantha Willd., A. senegal (L.) Willd. et A. sieberana DC.

- Les taxons du quatrième groupe (aire D de la figure I) ont des aires relativement restreintes et centrées sur l'Afrique de l'Est : Éthiopie, Kenya, Ouganda, Somalie, Soudan, Tanzanie. Notons parmi les nombreux taxons de ce groupe : Acacia asak (Forssk.) Willd., A. bussei Harms. ex Sjost, A. drepanolobium Sjost, A. etbaica Schweinf. subsp. etbaica, A. nilotica (L.) Willd. ex Del. subsp. leiocarpa Brenan et subsp. subalata (Vatke) Brenan, A. orfota (Forssk.) Schweinf. et A. tortilis subsp. tortilis.
- Les taxons du cinquième groupe (aire E, figure I) présentent des aires parfois relativement étendues qui recouvrent essentiellement la Tanzanie, le Kenya et le Mozambique. Parmi les nombreux taxons de ce groupe notons : Acacia adenocalyx Brenan & Exell, A. etbaica subsp. australis Brenan, A. gerrardii Benth., A. lasiopetala Oliver, A. mellifera (Vahl) Benth. subsp. mellifera, A. schweinfurthii Brenan & Exell, A. tortilis subsp. heteracantha (Burchell) Brenan et A. xanthophloea Benth.
- La partie méridionale de l'Afrique (Afrique du Sud, Botswana, Zimbabwe, Namibie, Mozambique) constitue l'essentiel de l'aire des espèces du sixième groupe (aire F de la figure I) comportant lui aussi de nombreux taxons dont : Acacia arenaria Schinz, A. caffra (Thunb.) Willd., A. karroo Hayne, A. kraussiana Meissn. ex Benth., A. mellifera (Vahl) Benth. subsp. detinens (Burchell) Brenan.
- Dans ce contexte, il faut également faire une place à part aux cinquante taxons endémiques à l'échelle d'un pays. En Afrique, la région de plus grand endémisme dans le genre Acacia est l'Afrique de l'Est, et plus particulièrement la Tanzanie, suivie de la Somalie et de l'Éthiopie. Cet endémisme est également relativement élevé dans la région méridionale de l'Afrique et jusqu'aux frontières nord du Zaïre et du Soudan. Pour le reste de l'Afrique, il n'existe pas dans le genre Acacia d'endémisme reconnu, si l'on excepte toutefois le Maroc avec Acacia gummifera Willd. Toujours pour le Maroc nous avons exclu A. mauroceana DC., pour laquelle LOCK (1989) évoque un statut taxonomique d'« espèce provisoire » mais qui s'est de fait révélée être une espèce mexicaine (GREUTER et RAUS, 1989), plus exactement connue sous le binôme Painteria leptophylla (Cax.) Britton & Rose.


Aire de distribution d'Acacia tortilis subsp. raddiana

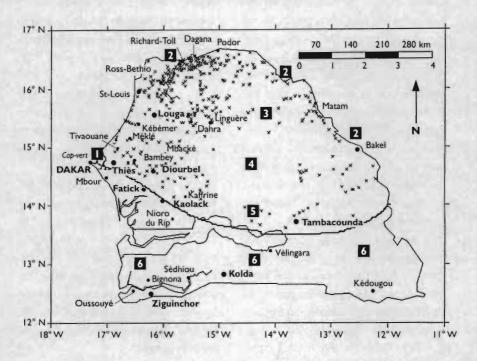
La distribution générale africaine d'Acacia tortilis subsp. raddiana a été brièvement évoquée par Aubréville dès 1937. Il écrit : « Globalement ...Acacia tortilis subsp. raddiana est distribuée sur toute la zone saharienne. » Il s'agit là d'une information erronée, le taxon étant justement quasi absent de la zone saharienne en dehors des lits d'oueds et de quelques dépressions. La distribution de la sous-espèce, et même de l'espèce, est encore mal connue au niveau de plusieurs pays. Des cartes (très sommaires ou très fragmentaires) de distribution de ce taxon existent

cependant dans la littérature. Les premières esquisses de cartes de répartition un peu générales sont vraisemblablement celles établies par AUBRÉVILLE (1950) pour la zone sud du Sahara (fig. 2) et par QUÉZEL et SANTA (1962) pour le nord de l'Afrique (fig. 3).

Aire de répartition d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi)
Brenan au sud du Sahara d'après Aubréville (1950).

Aire de répartition d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi)
Brenan au nord de l'Afrique d'après QUEZEL et SANTA (1962).

De nombreuses études ponctuelles sont également illustrées de documents cartographiques concernant des zones plus ou moins étendues. Sans prétendre être exhaustifs, signalons les travaux auxquels nous avons eu accès et dont les références complètes sont données dans la bibliographie :


BOUHOL (1940), GUINEA (1945), AUBRÉVILLE (1950) (fig. 2), KARSCHON (1961), QUÉZEL ET SANTA (1962) (fig. 3), QUÉZEL (1965), GRONDARD (1964), SCHIFFERS (1971), HALEVY ET ORSHAN (1972 a et b), KNAPP (1973), LEVI (1974), EL AMIN (1992), TERRIBLE (1984), NEUMANN (1987), MANDAVILLE (1984), MARTIN ET VASSAL (1989), KENNENNI (1991), BEENTJE (1994), KALATDJI ET YOUNSI (1994), CARDOSO (1995), QUÉZEL ET al. (1995), AG SIDYÈNE ET al. (1996), DIOUF ET GROUZIS (1996).

Il reste délicat, malgré les apports de ces nombreuses références, de se faire une idée convenable de la distribution du taxon. Le recours aux flores et autres inventaires floristiques se révèle assez décevant. C'est ainsi que dans l'énoncé de la distribution des divers taxons africains du même genre, LOCK (1989) a entre autres omis de signaler la présence d'Acacia raddiana en Tunisie et au Maroc. Dès lors, il nous a paru capital de porter une grande attention à l'établissement de la carte de répartition de ce taxon. Acacia tortilis subsp. raddiana appartient au groupe des taxons présents sur une large aire péri-saharienne et moyen-orientale (aire A de la figure 1). La carte de répartition que nous produisons ici (fig. 4) reste provisoire. Elle pourra certainement être améliorée au fur et à mesure qu'il sera possible de mieux intégrer l'ensemble des informations déjà disponibles, et de déceler ainsi les lacunes à combler. Il est d'ores et déjà évident que la distribution de ce taxon dans la péninsule Arabique et en Afrique de l'Est (Kenya, Djibouti et Somalie) doit être précisée.

De même, si les limites nord et sud Sahara commencent à être connues, il en est tout autrement de la zone saharienne où de grandes superficies sont vides de ce taxon. Il importerait également de pouvoir disposer de plus d'informations sur la densité des peuplements, donnée encore difficilement cartographiable. Il est cependant possible, dans l'état actuel de nos connaissances, de retenir ce taxon comme étant présent dans les pays d'Afrique suivants : Mauritanie, Sénégal, Maroc, Mali, Algérie, Burkina Faso, Niger, Nigeria, Tunisie, Libye, Cameroun, Tchad, Soudan, Égypte, Kenya, Érythrée, Djibouti, Somalie. Au Moyen-Orient, il est présent au Liban, en Israël, Syrie, Jordanie, Arabie Saoudite et au Yémen.

Il est aussi évident que l'extension actuelle du taxon n'est qu'un pâle reflet de l'extension passée. Ainsi que le signale LEFEBVRE (1889), la régénération de ce taxon est délicate dans la partie nord de sa dition. De nombreux témoignages attestent de la pression anthropique parfois exacerbée sur les individus de ce taxon. FLORET et al. (1986) ont rapporté que, lors de mesures effectuées en 1985 au Bled Talah (Tunisie), les troncs les plus gros d'Acacia tortilis subsp. raddiana ne mesuraient pas plus de 0,9 à 1 m de circonférence. Ils mentionnent également que DOUMET ADANSON (1887) signale avoir rencontré en 1884, à proximité de Rhédir El Thala, un individu de 4 m de circonférence et de nombreux autres individus de fortes dimensions. Durant le siècle qui sépare ces deux informations, la forêt de « gommiers » a donc beaucoup régressé en étendue, bien que l'abattage y soit formellement interdit.

Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan au Sénégal

Noms vernaculaires

Peul: tili, sili, tiluki, alluki, allodé

Sérère, ouolof : sèg Toucouleur : tiluki

Aire de répartition

Rencontrée dans 464 localités, cette sous-espèce s'étend environ sur les deux tiers du territoire dans la bande située, d'une part, entre les parallèles nord 13° 30' et 16° 35' et, d'autre part, entre les méridiens ouest 12° 06' et 16° 53'. Sur la côte occidentale, elle atteint la mer. Elle constitue des populations denses sur les sables du quaternaire à l'ouest et au nord du territoire. Dans les autres parties de

se présente souvent à l'état isolé, comme dans la moitié nord de la presqu'île du Cap-Vert (zone I).

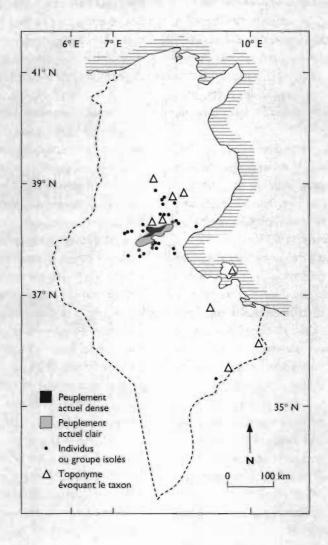
Dans le nord-est du Ferlo (zone 3), Acacia raddiana se rencontre dans les formations très ouvertes à Combretum glutinosum Perrot. ex DC. et Commiphora africana (A. Rich.) Engl. et dans les champs autour des villages.

Dans le Ferlo sud (zone 5), Acacia raddiana se concentre en amont du lit majeur de la Gambie et le long des affluents de ce fleuve, dans les espaces très cultivés où s'observent

des formations secondaires

jachères.

son aire, elle est relativement rare et


Toutefois, Acacia raddiana ne se rencontre ni dans la moitié sud de la presqu'île du Cap-Vert (zone I) ni dans les formations de la vallée et du delta du fleuve Sénégal, entre la route St Louis-Bakel (Nationale 2) et le fleuve (zone 2). En effet, le long du fleuve, cette sous-espèce n'occupe que les terrains sableux, légers, non inondables, au pied desquels s'arrêtent les plus fortes crues. Acacia raddiana est aussi absente des formations à Pterocarpus lucens Lepr. et Commiphora africana (A. Rich.) Engl. du Nord-Est (zone 3) et du Ferlo oriental (zone 4), ainsi que des formations forestières des zones soudano-guinéennes du sud du pays.

La limite sud de l'aire de répartition coïncide avec l'isohyète 700 mm à l'ouest et l'isohyète 900 mm à l'est.

Sur le plan édaphique, cette sousespèce est inféodée, d'après la classification de Maignien (1965): aux sols bruns subarides à l'est, aux sols ferrugineux tropicaux peu lessivés sur sables siliceux à l'ouest, aux sols bruns subarides sur colluvions et aux sols brun rouge sur sables siliceux au nord, c'est-à-dire aux sols légers, généralement sableux, plus ou moins profonds et filtrants.

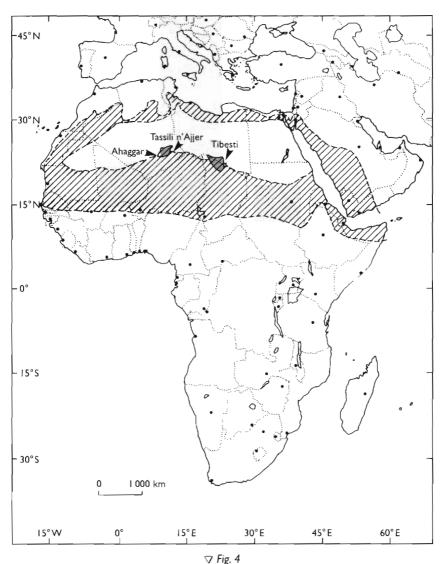
Elle ne colonise pas d'une part les sols lourds, hydromorphes (vertisols sur marnes de la partie sud de la presqu'île du Cap-Vert, sols hydromorphes à pseudo-gley sur alluvions de la vallée du fleuve Sénégal) et d'autre part les sols sablo-argileux souvent concrétionnés et cuirassés en profondeur (nord-est du Ferlo, Ferlo oriental).

Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan en Tunisie

C'est à PELLISSIER (1853) que l'on doit d'avoir porté à la connaissance des Autorités beylicales l'existence d'un peuplement d'Acacia au Bled Talah. Il en a fait le récit suivant : « À la droite de cette rivière (n.d.l.r. = oued Bou-Hedma), règne une forêt de gommiers qui s'étend à plus de

30 kilomètres vers l'ouest. Les arbres, dont plusieurs sont de grosseur remarquable, sont bien le *Mimosa gummifera* qui produit la gomme arabique. Cette forêt, dont l'existence était ignorée du gouvernement tunisien avant que je la lui eusse fait connaître, n'est pas exploitée;

seulement les arabes qui y passent par hasard y prennent un peu de gomme, qu'ils vendent dans les villes pour la fabrication de l'encre. Cette gomme, dont j'ai envoyé des échantillons à Marseille, a été reconnue par le commerce de cette ville d'aussi bonne qualité que celle du Sénégal. »


Cette espérance, quoique non fondée, a contribué à ce que s'établisse la légende de « pays de gommiers ». L'expression a subsisté jusqu'à une période récente sur plusieurs documents cartographiques. Le XIX^e siècle s'évertuait à découvrir les ressources dans les pays récemment explorés ; la gomme était l'une d'entre elles et était de surcroît présente dans des espaces par ailleurs considérés comme très démunis.

DOUMET ADANSON (1887) fut le premier à étudier véritablement ce peuplement de « gommiers » et à reconnaître qu'il est constitué par Acacia tortilis formant des peuplements en mélange avec Rhus oxyacanthoides et Pistacia atlantica. Il constate de plus que sa distribution dans cette zone de la Tunisie est limitée entre l'oued Leben et l'oued Baïech.

LEFEBVRE (1889) note quant à lui qu'il s'agit « d'un boisement de 35 000 hectares situé dans la partie la plus méridionale de la Tunisie entre Gafsa et Maharès, dans la région appelée Bled Thalah. Quelques pieds isolés se

retrouvent sur la route de Gabès à Kairouan, au nord du massif du Bou-Hedma, dans le bled Mezzouna. près d'El Hafey, et au pied de la chaîne du Cherb ». Il signale également qu'il s'agit du groupement le plus septentrional de cette espèce, et que le « gommier » ne se régénère que mal, les graines étant toutes attaquées par un coléoptère du genre Brucchus (déjà signalé par Doumet-Adanson en 1874). Il précise « qu'il existe donc très peu de jeunes sujets dans le bled Thalah et que dès qu'il s'en produit, ils sont détruits par le pâturage des moutons et des chèvres ».

L'existence de ce peuplement, isolé des formations plus méridionales, laisse place à l'hypothèse d'une extension ancienne plus généralisée dans cette zone. La collecte des toponymes arabes relatifs à ce taxon permet d'améliorer la connaissance sur sa distribution passée comparativement à sa distribution actuelle ou sub-actuelle (situations où la présence du taxon a été connue à une période récente, postérieure à 1960, mais d'où il est actuellement absent). De toute évidence, l'extension générale des toponymes (cf. carte) est nettement plus large que la distribution actuelle. Le peuplement du Bled Talah peut à terme devenir totalement isolé du reste de l'aire du taxon et cela peut être lourd de conséquences.

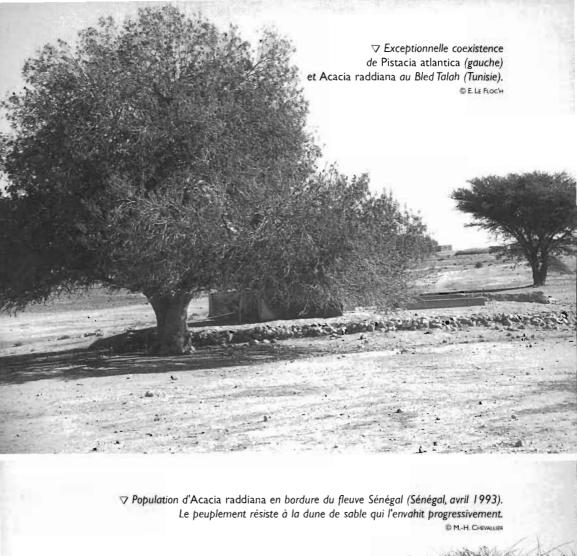
Aire de répartition d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan.

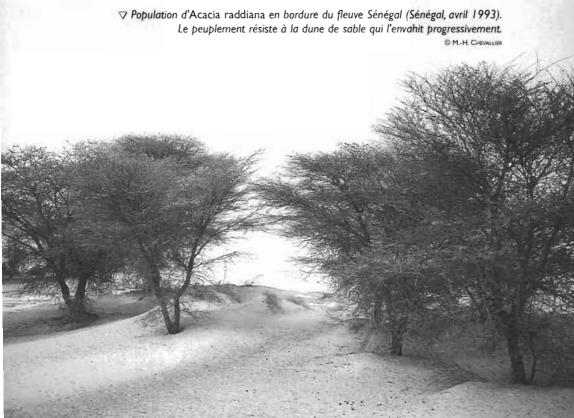
Certains peuplements occupent cependant de larges espaces. Ainsi, sur le revers de l'Anti-Atlas (Maroc), les formations à *Acacia tortilis* subsp. *raddiana* relativement denses s'étendent sur environ 260 000 ha (OULD FADHILY, 1992).

Quoi qu'il en soit aujourd'hui, le constituant le plus septentrional de l'aire d'extension d'Acacia tortilis subsp. raddiana est la forêt dite du « Bled Talah » en Tunisie aride. Son existence isolément des formations plus méridionales laisse place à l'hypothèse d'une extension ancienne plus généralisée dans cette zone.

Écologie

Le fait que le rang taxonomique infraspécifique n'ait été précisé que très récemment dans la littérature entraîne de nombreuses possibilités de confusion et rend délicat le recours aux informations éparses.


Ce taxon, de très large répartition, est présent à la fois sous bioclimat tropical sec et aride du Sahel et du Sahara, mais également sous bioclimat méditerranéen aride et semi-aride. Il correspond plus ou moins exactement, pour ce qui concerne sa limite sud, avec les isohyètes 700 mm à 900 mm (DIOUF et GROUZIS, 1996). La limite septentrionale de l'aire d'Acacia tortilis subsp. raddiana paraît bien se superposer aux isothermes qui coïncident avec les valeurs moyennes des minimas du mois le plus froid (m) comprises entre 3 et 4 °C (QUÉZEL et SIMONNEAU, 1963; LE HOUÉROU, 1995). Le taxon a une aire recouvrant pour l'Afrique nord et sud du Sahara, l'essentiel de la zone aride au sens de MEIGS (1953). Au sud du Sahara, elle empiète largement sur les zones semi-arides du même auteur. Elle est par contre absente, de façon quasi absolue, de la zone « extrêmement aride », où elle n'occupe que les lits d'oueds et quelques dépressions. Elle est également présente dans les massifs montagneux, y compris ceux de la zone saharienne : l'Ahaggar, le Tassilli n'Ajjer et le Tibesti, ainsi que dans les massifs de l'Aïr et de l'Ennedi (AUBRÉVILLE, 1950).


A. tortilis subsp. raddiana ne fait donc défaut que dans les zones hyperarides et dans les grands ergs du Sahara septentrional du Sud algérien et Sud tunisien, où sa limite vers le nord se situe, exception faite du peuplement de Bled Talah en Tunisie aride, sur le revers septentrional du Tadémaît et de la Hammada de Tinhert.

Il est à noter que le taxon existe depuis le niveau de la mer – ou de l'océan (au Sénégal; DIOUF et GROUZIS, 1996) – jusqu'à des altitudes élevées. Selon MAIRE (1933), il remonte dans le massif de l'Ahaggar jusqu'à 1 800-1 900 m d'altitude et exceptionnellement, par pieds isolés et buissonnants, jusqu'à 2 100 m. De même, AUDRU et al. (1994) le signalent à Djibouti, dans le Yager et au Moussa Ali. AG SIDYÈNE et al. (1996) retrouvent ce taxon en abondance dans l'Adrar des Iforas (Mali). Rare dans les interfluves, Acacia tortilis subsp. raddiana apparaît le plus souvent comme étant distribué en rubans étroits et plus ou moins longs dans les lits des oueds asséchés, dans les vallées qui descendent des massifs sahariens. Cette écologie particulière fait qu'il remonte assez loin dans le Sahara nordoccidental, en fait jusqu'au pied de l'Anti-Atlas marocain et de l'Atlas saharien oranais.

MAIRE (1940), dans un chapitre consacré aux latitudes et altitudes maximales de quelques espèces sahariennes, note que ce taxon atteint au Sahara occidental la latitude de 32° N. Au Sahara central, il est présent en aire continue jusqu'à la latitude 30° N et en îlots reliques jusqu'à 34° N (peuplement du Bou Hedma, Tunisie).

Du point de vue édaphique, il est généralement reconnu que cette sous-espèce prospère bien sur les sols légers et bien drainés :

- sur les sols sablonneux-limoneux et pierreux des oueds, les zones d'épandages et les ravins pierreux (MAIRE, 1933). Cela est surtout vrai dans les talwegs et lits d'oueds du Sahara, où ce taxon constitue un élément majeur d'une formation, physionomiquement assimilable à une savane arborée ;
- sur les sables, sur tous les ergs morts du Cayor sénégalais au Manga nigérien, sur les dunes bordières du Tchad (AUBRÉVILLE, 1950) ;
- sur les sables, les sols bruns steppiques, sur les colluvions et sur les sables quaternaires (DIOUF et GROUZIS, 1996) ;
- sur les terrains salés littoraux, où on le rencontre parmi les espèces halophiles (AUDRU et al., 1994);
- dans les bas-fonds alluviaux (LE HOUÉROU, 1995).

La sous-espèce est absente des sols hydromorphes et lourds, comme dans les basses vallées du Sénégal (DIOUF et GROUZIS, 1996), ainsi que des sols à croûtes. Le taxon est présent dans diverses formations végétales, largement décrites dans la littérature mais que nous évoquerons cependant brièvement ici.

Au sud du Sahara, l'espèce est présente dans les savanes plus ou moins densément arborées où prédominent les épineux, en particulier ceux du genre Acacia: A. tortilis subsp. raddiana, A. seyal, A. senegal, etc. Dans cette situation, les pluies strictement liées au front tropical expliquent, selon Quézel (1965), la prédominance quasi absolue de types floristiques africains.

Au nord du Sahara, la végétation est nettement plus basse (steppe), dominée par Haloxylon scoparium Pomel, H. schmittianum Pomel (et de nombreuses autres chénopodiacées), Retama retam (Forssk.) Webb, Stipa tenacissima L., Seriphidium herba alba (Asso) J. Sojak (syn. Artemisia herba alba Asso), Rantherium suaveolens Desf., etc. Dans ce contexte, la présence de pluies estivales, même faibles, explique l'apparition de quelques végétaux tropicaux (Acacia en particulier).

Du point de vue phytosociologique, la distribution d'Acacia tortilis subsp. raddiana est essentiellement connue par les travaux de Quézel (1965). Dans le contexte saharien, Quézel cite comme étant les plus communément marquées par ce taxon les associations suivantes :

- association à Acacia raddiana et Panicum turgidum Forssk. dans les lits des oueds les plus larges. Ces deux espèces sont éventuellement associées à Foleyola billotii pour le Sud marocain ;
- association à A. raddiana et Ziziphus lotus (L.) Lam. des lits d'oueds sableux ;
- association à A. raddiana et Rhus tripartita (Ucria) Grande dans les parties les plus élevées de lits d'oueds caillouteux.

Il est également possible de préciser l'écologie de ce taxon en la comparant à celle de quelques autres taxons, de souche tropicale ou septentrionale, qui l'accompagnent en certaines circonstances (QUÉZEL, 1965).

Globalement, les espèces de souche tropicale n'apparaissent pas au Sahara septentrional, ne franchissant pas vers le nord la limite des influences des précipitations se rapportant au front intertropical (pluies de mousson). Dans ce contexte, *Acacia tortilis* subsp. *raddiana* est sans conteste le taxon arborescent de

souche tropicale qui remonte le plus au nord, franchissant même la totalité des espaces sahariens. Les autres taxons se limitent comme suit :

- Acacia seyal est assez typiquement sahélienne ;
- Balanites aegyptiaca (L.) Del. est progressivement dominante dans la savane arborée sahélienne et fréquente dans les oueds rocailleux du Sahara central et occidental :
- Maerua crassifolia Forssk. présente une distribution assez semblable à celle de Balanites aegyptiaca ;
- Ziziphus mauritiana Lam., assez fréquente sur le versant sud de l'Ahaggar, remonte jusqu'au Sahara méridional.

Quelques éléments résiduels méditerranéens, présents soit dans les massifs montagneux, soit dans les oueds, subsistent dans la portion saharienne de l'aire d'Acacia tortilis subsp. raddiana. Les taxons des massifs montagneux sont éventuellement plus abondants plus au nord en zone aride. Il s'agit par exemple de :

- Pistacia atlantica Desf., dont quelques individus subsistent encore dans l'Ahaggar et à la Seguiet el Hamra, et qui présente parfois plus au nord une zone de recouvrement de son aire avec celle d'Acacia tortilis subsp. raddiana. C'est en particulier le cas dans le Sud tunisien et en Jeffara libyenne ;
- Tamarix aphylla (L.) H. Karst. (syn. T. articulata), présent dans les grands oueds du Sahara central, occidental et septentrional.

Les espèces du genre *Calligonum* sont plus strictement localisées dans la portion septentrionale et océanique du Sahara. Il s'agit de taxons essentiellement iranotouraniens.

Croissance, production

Sans vouloir entrer dans le détail des études relatives à l'écophysiologie de la croissance et de la production, en raison de l'approche naturaliste de cette contribution introductive, nous nous proposons de rapporter quelques données concernant ces aspects qui n'ont pas été explicitement abordés dans le projet auquel se réfère cet ouvrage. Nous nous limiterons à décrire quelques éléments permettant de mieux cerner le caractère adaptatif d'Acacia tortilis subsp. raddiana à l'aridité et de comprendre son utilisation par les populations rurales.

Acacia tortilis subsp. raddiana est capable de survivre dans les milieux les plus arides. Elle relève des espèces dont le fonctionnement hydrique a été largement étudié en conditions naturelles (ZOHARY et ORSHAN, 1956; STOCKER, 1970; ULLMANN, 1985; FOURNIER, 1995; DIOUF, 1996; BERGER et al., 1996; GROUZIS et al., 1998; DO et al., 1998). Les échanges gazeux foliaires (transpiration, photosynthèse) sont élevés en saison des pluies et correspondent à un relatif équilibre thermodynamique sol-plante. Au cours de la saison sèche, alors que les conditions

xériques s'aggravent, on assiste à une diminution de l'intensité transpiratoire, attribuable à la fois à la perte du feuillage et à la réduction de la conductance stomatique. Ces propriétés traduisent une bonne adaptation de ce taxon aux conditions d'aridité.

Les travaux réalisés en conditions expérimentales (vase de végétation, rhizotron) par divers auteurs (COLONNA et al., 1993; KIREGER et BLAKE, 1994; KANE et al., 1997) concernent le plus souvent l'influence du facteur limitant essentiel de ces régions, à savoir la contrainte hydrique, sur la croissance et la production. Ils ont pour objet l'identification des caractères d'adaptation et de tolérance d'Acacia tortilis subsp. raddiana à l'aridité, et de comparer ses performances à celles d'autres taxons (Acacia senegal, Acacia dudgeoni, Faidherbia albida) susceptibles d'être utilisés dans des programmes d'agroforesterie et de réhabilitation.

KANE et al. (1997) rapportent qu'en bonnes conditions d'alimentation en eau, c'est Acacia tortilis subsp. raddiana qui présente la meilleure production de matières sèches totales (respectivement 2 et 2,8 fois plus élevée que celles de A. senegal et de A. dudgeoni). Sa production est aussi la plus élevée en conditions de déficit hydrique sévère (1,4 à 2,2 fois plus élevée que celle des autres espèces semblables). C'est le taxon qui possède la meilleure efficience en eau, quelles que soient les conditions hydriques, confirmant ainsi les travaux de COLONNA et al. (1993) et Kireger et Blake (1994). Il a aussi été démontré que les racines s'allongent d'autant plus en profondeur que l'humidité du sol de culture décroît. Cela traduit une grande aptitude des jeunes plants à rechercher l'humidité. C'est aussi un caractère d'accomodation aux variations saisonnières de disponibilité en eau de son milieu naturel, car il permet à la plante d'exploiter dès le stade jeune les horizons inférieurs du sol plus humides, et d'atteindre le plus rapidement ces zones profondes pour survivre à la longue saison sèche.

En raison des multiples usages d'Acacia tortilis subsp. raddiana (cf. paragraphe suivant) et donc de son importance dans l'économie rurale des régions sèches, notamment d'Afrique, de nombreux auteurs (BILLE, 1980 ; PIOT et al., 1980 ; COUGHENOUR et al., 1985 ; HUSSAIN, 1989 ; MENWYELET ATSEDU et al., 1994 ; JAIN et al., 1996) ont proposé des relations pour estimer la production de parties utiles (feuilles, fruits, bois) en fonction de paramètres staturaux (diamètre à hauteur de poitrine, hauteur, recouvrement). On doit reconnaître que de nombreuses références s'adressent à Acacia tortilis s. l. et plus spécifiquement à A. tortilis subsp. spirocarpa (GUFU OBA, 1998) et à A. tortilis subsp. heteracantha (MILTON, 1983 ; PELLEW, 1980). Pour A. tortilis subsp. raddiana, BILLE (1980) avance que, dans des zones recevant en moyenne 400 mm de précipitations par an, des individus atteignant 30 cm de diamètre du tronc peuvent produire annuellement 1 600 kg de matières sèches de feuilles par hectare.

Dans des plantations réalisées au Sénégal (région de Bambey à 460 mm de pluies moyennes annuelles) et avec des écartements de 3 x 3 m, GAYE et al. (1998) rapportent que Acacia tortilis subsp. raddiana présente, par rapport à A. seyal et à A. senegal, le meilleur taux de survie à la reprise et la meilleure croissance (surface terrière à 4 ans de 1,5 à 2 fois supérieure à celles des autres deux espèces citées). La productivité maximale qui s'élève à 2,6 m³.ha-¹.an-¹ est atteinte

à six ans. Dans des plantations âgées de 4 ans, ce taxon fournit une quantité non négligeable de bois vert (6,5 t.ha⁻¹) et de fourrage (140 kg.ha⁻¹de feuilles). Des productivités allant de 1 t_{MS}.ha⁻¹.an⁻¹ de brouts (jeunes pousses et feuilles) à 1,7 t_{MS}.ha⁻¹.an⁻¹ ont été respectivement avancées en Inde et en Afrique du Sud (WICKENS et al., 1996) et dans le parc de Serengeti pour Acacia tortilis subsp. heteracantha (PELLEW, 1980).

Pande et al. (1989) montrent que la phytomasse épigée totale d'Acacia tortilis subsp. raddiana, qui s'élève à 167,3 t_{MS}.ha⁻¹ en conditions irriguées, est 6 fois plus élevée que celle obtenue pour A. nilotica. Ce rapport est de 10 dans des conditions non irriguées.

Pour les fruits, MENWYELET ATSEDU et al. (1994) ont obtenu pour Acacia tortilis subsp. spirocarpa une production moyenne de 5,3 kg de fruits par arbre, soit un rendement de 75 à 850 kg_{MS}.ha⁻¹ en fonction des densités observées. Ces chiffres se situent dans la gamme des valeurs proposées par BILLE (1980) pour A. raddiana: (400 à 600 kg_{MS}.ha⁻¹ dans des zones à 400 mm de pluies annuelles).

Il est utile de noter que les auteurs s'accordent pour admettre la grande variabilité individuelle, intersite et interannuelle de ces productions. Ces variabilités sont liées d'une part à des caractéristiques génotypiques des taxons et d'autre part aux fluctuations erratiques des conditions de milieu (accès aux disponibilités nutritionnelles locales, variabilité climatique).

Usages

Tous les ouvrages de pastoralisme, d'anthropologie et d'ethnobotanique regorgent d'informations, souvent redondantes hélas, sur les nombreux usages des divers organes de ce taxon.

Alimentation animale

Il est partout reconnu un grand intérêt fourrager aux feuilles, gousses, jeunes rameaux et même épines, et ce plus particulièrement pour les chèvres et les dromadaires. Les girafes (GILLET, 1981) sont également grandes consommatrices d'acacias en général. AUDRU et al. (1994) signalent qu'à Djibouti les éleveurs lancent leurs chèvres sur le houppier de ce taxon pour leur permettre d'en brouter les feuilles. Pour l'Ahaggar, GAST (1968) rapporte une pratique, également courante dans d'autres situations du Sahel, qui consiste pour les bergers à rabattre les branches feuillées pour les rendre plus accessibles aux chevreaux. Dans l'Aïr, les feuilles, fleurs et fruits sont éventuellement collectés par les bergers et distribués aux chèvres (SCHULZ et AMADOU, 1992). L'ingestion des gousses, graines, rejets, stipules et jeunes épines constituerait selon BELLAKHDAR (1978) un remède efficace contre la « colique de sables » qui affecte les dromadaires en zone saharienne du Maroc.

Des informations sur la qualité nutritive de ce taxon sont apportées dans la littérature par BOUDET (1970), PELLEW (1980), FAGG (1991), TOURE FALL (1991). Nous indiquons dans le tableau I la composition chimique moyenne, tous organes consommables confondus, telle qu'elle a été calculée par LE HOUÉROU (1980) (données rassemblées au Sénégal, Niger, Burkina Faso, Mali et Soudan).

√ Tableau I – Composition chimique moyenne des organes d'Acacia tortilis subsp. raddiana consommables par les animaux domestiques (LE HOUÉROU, 1980).

MS	PB	СВ	MG	ENA	PD	Min.
81,3	16,5	18,3	2,6	54,9	12	6,4
Si	P	Ca	Mg	K	EN	PD/UF
0,9	0,2	1,62	0,3	1,4	6,1	132

Où sont exprimés en % : MS = matières sèches ; PB = protéines brutes ; CB = cellulose brute ; MG = matières grasses brutes ; ENA = extractif non azoté ; PD = protéines digestibles ; Min.= minéraux totaux ; Si = silice ; P = phosphore ; Ca = calcium ; Mg = magnésium ; K = potassium. Les autres paramètres sont exprimés différemment :

EN = énergie nette (en MJ par kg MS); PD/UF = rapport nutritionnel.

Pour le Niger, BERNUS (1981) note quelques problèmes de toxicité liés à la consommation de ce taxon (Afagag) par les animaux domestiques. Ainsi, l'absorption d'une trop grande quantité de gousses peut donner un « coup de sang » au dromadaire. Il est précisé qu'il s'agit d'un « coup de sang du ventre ». Dans ce cas, l'animal peut être soigné par une décoction à base de feuilles de Boscia senegalensis (Pers.) Lam. ex Poir. pilées et mélangées à de l'eau et du lait de vache. Cette décoction peut le guérir de ce qui est en réalité une diarrhée sanguinolente. Le même auteur attire également l'attention sur le fait que moutons et chèvres sont sujets à la congestion qui serait parfois provoquée par une ingestion excessive de gousse d'Afagag. Le soin proposé consiste à déchirer une oreille de l'animal malade et à laisser s'écouler le sang.

Alimentation humaine

Le recours à ce taxon pour l'alimentation humaine semble anecdotique en dehors des périodes d'insuffisance de disponibilités alimentaires. Le travail de GAST (1968) est très informatif sur le sujet. On retiendra notamment que :

- les graines des gousses sèches, collectées puis pilées au mortier de bois, sont transformées en une farine qui est consommée telle quelle, sèche ou humectée d'un peu d'eau. Cette farine est aussi parfois mélangée à de la farine de blé, de mil ou encore d'orge pour faire des bouillies;
- les gousses sont, en cas de besoin, collectées, grillées, pilées et consommées en farine. Elles peuvent également être consommées vertes ou rôties. Cueillies avant maturité. elles sont bouillies à l'eau salée;

- en période de grave disette, il arrive que les hommes consomment également les feuilles crues ;
- la gomme s'écoulant des blessures des parties basses des troncs est très amère quand elle est molle et fraîche. Cette amertume est moindre à l'état solide, mais cette gomme n'est cependant que peu consommée comme aliment;
- la gomme qui exsude des branches hautes des jeunes arbres est parfois mâchée par les enfants.

D'autres informations éparses, qui le plus souvent confirment ou précisent les données de GAST (1968), sont rapportées dans la littérature.

Au Niger, Bernus (1981) signale que les gousses récoltées et pilées sont consommées en mélange à du lait caillé.

Dans l'Aïr, SCHULZ et AMADOU (1992) rapportent également plusieurs usages dans l'alimentation humaine, particulièrement en cas de disette. Ainsi, les feuilles broyées peuvent être consommées en mélange avec du lait caillé ou accompagnées de fromage. Durant ces mêmes périodes, la gomme peut également être consommée.

Dans l'Adrar des Iforas, les graines légèrement torréfiées et des gousses réduites en poudre sont utilisées en mélange avec du lait (AG SIDYÈNE et al., 1996).

Usages médicinaux

Les usages en médecine populaire sont également nombreux. Ainsi GAST (1968) signale que la gomme peut être utilisée pour panser les blessures et les brûlures. Déjà en 1949, HERNANDEZ-PACHECO et al. rapportaient, concernant le Sahara espagnol, que la gomme est un médicament contre les maux de ventre et que l'écorce réduite en poudre est un activant efficace de la cicatrisation des plaies. LARRIBAUD (1952) a noté qu'au Sahara occidental, en cas de diarrhées légères, on se contente parfois de sucer un peu de gomme de ce taxon. Il rapporte également pour la même région que, contre les taies (voile blanc recouvrant la cornée de l'œil), on applique sur la cornée un mélange broyé de graines émondées de Cassia italica (Mill.) F.W. Andr. en provenance de Tombouctou, d'Acacia tortilis subsp. raddiana et de noix de Cola nitida A. Chev.

Passager et Barbançon (1956) ont signalé que, dans le Sahara oranais, la gomme sert à relever et coller les cils dans les cas de débuts d'entropions (renversement de la paupière vers l'intérieur).

BELLAKHDAR (1978, 1997) puis BOULOS (1983) ont pour leur part consigné que :

- la gomme dissoute dans l'eau est utilisée pour traiter les affections oculaires, la jaunisse et les maladies pulmonaires ;
- l'écorce desséchée et réduite en poudre est un désinfectant des blessures ;
- les graines, entières ou réduites en poudre, sont anti-diarrhéiques.

Selon VON MAYDELL (1983), on administre les feuilles en mélange avec des graines de « niébé » [Vigna unguiculata (L.) Walp.] contre les œdèmes et les dermatoses allergiques.

SCHULZ et AMADOU (1992) signalent des usages médicinaux intéressants dans l'Air (Niger). La partie vivante de l'écorce est utilisée, après pilage et macération dans l'eau, pour provoquer des vomissements afin de désengorger le foie. Cette même macération fait également baisser la température en cas de fièvre. Les feuilles d'Acacia tortilis subsp. raddiana constituent aussi un composant important du mélange dit « llatan » de Bagzan (du nom du massif de Bagzan dans l'Aïr). Ce mélange de plantes est commercialisé jusqu'au sud du Sahel et constitue, avec le fromage, la principale source de revenus pour les femmes de l'Aïr. Il est composé de feuilles et de fruits de : Acacia laeta, A. tortilis subsp. raddiana, Commiphora africana (A. Rich.) Engl., Dichrostachys cinerea (L.) Wight & Arn., Rhus tribartita, Grewia bicolor Juss., G. tenax (Forssk.) Fiori, Lavandula coronopifolia Poir., Melhania denhamii R. Br., Ocimum basilicum L., Commicarpus helenae (Roem. & Schult.) Meikle, Lantana rugosa Thunb. (syn. L. salvifolia Jacq.), Leucas martinicensis (Jacq.) R. Br., Reseda villosa Coss., Solanum incanum L., S. nigrum L. et Vernonia cinerea (L.) Less.; c'est un fortifiant général, très prisé, utilisé en mélange avec de la farine ou encore incorporé à du fromage de chèvre.

Utilisations du bois et extraction de tanins

Il est partout reconnu que le bois de ce taxon constitue un combustible très apprécié et de pouvoir calorifique relativement élevé. Le charbon de bois qu'il procure est également apprécié. Il s'agit en outre d'un bois d'œuvre (grosses racines, troncs) assez recherché.

PASSAGER et BARBANÇON (1956) ont noté que le bois est également très apprécié pour la fabrication des poulies et des supports de poutre pour le puisage de l'eau au Sahara oranais. Les mêmes auteurs notent que l'écorce des racines sert au tannage des peaux. Cet usage est également fréquemment relevé ailleurs : en Libye (Fezzan) par LETHEILLEUX (1948) et COURNAND (1958), au Sahara espagnol par HERNANDEZ-PACHECO et al. (1949) ou encore en Tunisie saharienne par LE FLOC'H (1983).

Pour le nord du Niger, plusieurs usages ont été signalés par BERNUS (1981). Ainsi l'écorce est employée pour tanner les peaux et la fabrication de lanières. Les écuelles et les mortiers sont creusés dans les bois les plus gros, de même que le pommeau et le dossier de la selle des dromadaires.

Le bois ne semble pas être très apprécié pour la construction, et on lui reproche d'être trop cassant (SCHULZ et AMADOU, 1992). Il est utilisé par contre en maints endroits pour dresser des clôtures.

AG SIDYÈNE et al. (1996) relèvent de nombreux usages dans l'Adrar des Iforas (Mali) :

- fabrication d'objets en bois (mortiers, plats, piquets centraux de tente, etc.) en cas de non-disponibilité de bois de *Balanites aegyptiaca*;
- utilisation des fibres de l'écorce pour la fabrication de la plupart des cordages, ainsi que des filets de pis de chamelles. Ces fibres servent également à la confection des paniers à claire-voie que l'on balance à bout de bras pour la récolte de graines sauvages.

Production de bois, reforestation et lutte contre la désertification

Dans le nord du Niger, il est possible, selon BERNUS (1981), de procéder à des reboisements forestiers par la densification des peuplements naturels, notamment avec *Acacia tortilis* subsp. *raddiana* considéré comme taxon très plastique et très résistant à la sécheresse.

GROUZIS (1984) rapporte les considérations suivantes relatives à des essais entrepris au Burkina Faso. Dans une zone recevant 350 mm de précipitations moyennes annuelles, des essais de reboisement ont été entrepris portant sur 8 espèces indigènes (Acacia spp., Balanites aegyptiaca, Ziziphus mauritiana) et 3 espèces exotiques. Les essais ont été réalisés après sous-solage à 20 cm de profondeur, les lignes étant distantes de 6 m. Quel que soit le type de sol (glacis à placage sableux, glacis limoneux érodé à pente faible, glacis de transit à sol gravillonnaire), le taux de réussite d'Acacia raddiana, à la reprise, avoisine 50 % après deux années. Ce taux est supérieur à celui des espèces exotiques mais inférieur à celui d'A. adansonii qui atteint 85 %. Il semble que la teneur relativement élevée de son écorce en eau favorise la sensibilité d'A. raddiana à l'attaque des rongeurs.

En Inde (Rajasthan), ce taxon a fait ses preuves comme arbre fixateur des dunes (von Maydell, 1983). Cet usage est également signalé pour la Mauritanie, le Maroc, le Soudan, et le Yémen. Ainsi Kaul (1983) note qu'en Inde, planté avec des espacements de 5 x 5 m, ce taxon peut produire 30 tonnes de bois de chauffe au terme de 10 années. De même Gypta et al. (1973) signalent, toujours en Inde, qu'après 200 jours de développement la production de matière sèche épigée de ce taxon est largement supérieure à celle de Faidherbia albida, Acacia senegal ou encore de A. verek.

Les principales raisons de l'intérêt présenté par A. raddiana dans les domaines évoqués tiennent à :

- la relative facilité de multiplication de ce taxon, dont le taux de survie au Sahel a été évalué à 44 %, ce qui constitue un taux supérieur à celui des autres espèces exotiques et indigènes (GOSSEYE, 1980) ;
- ses particularités adaptatives aux conditions sèches : longueur du système racinaire, réduction des besoins en eau du fait de la faible surface foliaire, fonctionnement hydrique (PRASAD, 1991; DIOUF, 1996; BERGER et al., 1996; GROUZIS et al., 1998).

Conclusion

Il reste beaucoup à découvrir d'Acacia raddiana et cette présentation n'a pour objectif que d'introduire à une connaissance de type naturaliste. Le présent ouvrage rapporte, commente et interprète des résultats d'expérimentations,

mesures et observations obtenus sur un nombre réduit de sites, essentiellement distribués au Sénégal et en Tunisie sur des aires géographiques qui ne représentent donc qu'une portion très limitée des situations existantes. Il importe dès lors d'évaluer l'étendue relative des connaissances acquises. Une telle approche permet également d'alerter les chercheurs sur les multiples adaptations, déjà décelables tant sur le plan de la diversité génétique que sur celui des exigences écologiques. Le chantier est ouvert et comportera de nombreuses contributions.

Auteurs

E. Le Floc'h CNRS/CEFE L. Emberger, F-34293 Montpellier Cedex 5 M. Grouzis IRD, BP 434, Antananarivo 101, Madagascar

Références bibliographiques

N.B.: Au-delà des références signalées dans le texte, nous mentionnons également ici, de manière hélas non exhaustive, d'autres travaux intéressants qui compléteront la bibliographie de Faggs et Greaves arrêtée en 1988.

ABDALLAH L., CHAIEB M., ZAFOURI M. S.,

1999 – Phénologie et comportement « in situ » d'Acacia tortilis subsp. raddiana. Revue des Régions Arides, 11: 60-69.

ACHOUR A.,

1994 – L'écosystème à Acacia raddiana d'Oued Mird (Oued Draa à l'est de Zagora) : Contribution aux études phyto-écologique et ethnobotanique. Thèse 3° cycle, Ec. Nat. Forest. Ing. de Salé, Maroc, 101 p.

AG SIDYÈNE E., LE FLOC'H E., BERNUS E.,

1996 – Des arbres et arbustes spontanés de l'Adrar des Iforas (Mali). Étude ethnolinguistique et ethnobotanique. Paris, Orstom/Cirad, 137 p.

AIT AMER M.,

1993 – Contribution à l'étude de la flore et de la végétation dans la vallée de la Saoura, région de Béni-Abbès. DES, USTA Alger, 83 p.

AIT MOHAND L., ECHAIB B.,

1993 – Contribution à l'étude d'Acacia raddiana, cartographie, structure et évolution des peuplements de la région de l'Ougarta, Sahara nord-occidental.

Mémoire d'ingéniorat d'État en écologie végétale, USTA Alger, 98 p.

ANDREW F.W.,

1952 – Flowering plants of the Anglo-Egyptian Sudan. Arbroath, URT Buncle et C° Ltd, 3 vol., 1 301 p.

ANONYME.

1974 – L'arbre du Ténéré est mort. Bois et Forêts des Tropiques, 153 : 61-65.

ANONYME,

1986 – Growth of some forest trees in Ethiopia and suggestions for species selection in different climatic zones. Research Note, 2:52.

AUBRÉVILLE A..

1950 – Flore forestière soudano-guinéenne. AOF-Cameroun-AEF. Paris, Soc. d'Éditions géographiques, maritimes et coloniales, 254 p.

AUDRU J., CÉSAR J., LEBRUN J. P.,

1994 – Les plantes vasculaires de la République de Djibouti. Paris, Cirad-EMVT, 3 vol., 968 p.

BARBERO M., BENABID A., QUÉZEL P., RIVAS MARTINEZ S., SANTOS A.,

1982 – Contribution à l'étude des Acacio-Arganietalia du Maroc sud-occidental. Doc. Phytosociol., n.s. 6:311-338.

BARKOUDAH Y., VAN DER SAR D.,

1982 – L'Acacia raddiana dans la région de Béni-Abbès (Algérie). Bull. Soc. Hist. Nat. Afr. du Nord, 70 (1 à 4): 79-121.

BATANOUNY K. H.,

1979 – « The desert vegetation in Egypt ». In: Egyptian and American deserts, Symposium on arid land ecosystems, Cairo, may 1974, Cairo Univ., Inst. of African Research and Studies, 75 p.

BAUMER M.,

1959 – Le Dar Maganin (Province du Kordofan), République du Soudan. Paris, Orstom, 108 p.

BAUMER M.,

1975 – Catalogue des plantes utiles du Kordofan (République du Soudan) particulièrement du point de vue pastoral. Journal d'Agric. Tropicale et de Bot. Appliquée, 22 (4-5-6): 81-119.

BAUMER M ..

1983 – « Notes on trees and shrubs in arid and semi arid regions ». In: Plant Production and Protection Division, FAO, EMASAR, phase II: 55-60.

BAUMER M.,

1995 – Arbres, arbustes et arbrisseaux nourriciers en Afrique occidentale. Dakar, ENDA, sér. Études et recherches, 260 p.

BECKER B.,

1984 – Wildpflanzen in der Ernährung der Bevölkerung afrikanischer Tropengebiete: drei Fallstudien aus Kenia und Senegal. Göttingen Beiträge zur Land – und Forstwirtschaft im den Tropen und Subtropen, 6 (10), 342 p.

BEENTJE H. J.,

1994 – Kenya trees, shrubs and lianas. Nairobi, National Museums of Kenya.

BELLAKHDAR J.,

1978 – Médecine traditionnelle et toxicologie ouest-saharienne. Contribution à l'étude de la pharmacopée marocaine. Rabat, Éditions techniques nord-africaines, 357 p.

BELLAKHDAR J.,

1997 – La pharmacopée marocaine traditionnelle. Paris, Ibis Press, 764 p.

BENSAÏD S.,

1985 – Contribution à la connaissance des espèces arborescentes sahariennes : germination et croissance de Acacia raddiana Savi. Thèse Magister, USTA Alger, 70 p.

BENSAÏD S., AIT MOHAND L., ECHAIB B.,

1996 – Évolution spatio-temporelle des peuplements d'Acacia tortilis (Forssk.) Hayne raddiana (Savi) Brenan dans les monts Ougarta (Sahara nord-occidental). Sécheresse, 7 (3): 173-178.

BERGER A., GROUZIS M., FOURNIER C.,

1996 – The water status of six woody species coexisting in the Sahel (Ferlo, Senegal). *Journal of Tropical Ecology*, 12:607-627.

BERHAUT J.,

1967 – Flore du Sénégal. Dakar, Clairafrique,. 2º éd., 485 p.

BERNARD J., DARLEY J.,

1983 – Les acacias du Sud marocain : limites nord-ouest de l'aire d'Acacia ehrenbergiana Hayne (Mimosoidae). Bull. Fac. Sc. Marrakech (Sect. Sc. Vie), 2 : 203-214.

BERNUS E.,

1981 – Touaregs nigériens. Unité culturelle et diversité régionale d'un peuple pasteur. Paris, Mémoires Orstom, n° 94, 508 p.

BILLE J .- C.,

1980 – « Measuring the primary palatable production of browse plants ». In Le Houérou H. N., ed.: Browse in Africa: the current state of knowledge, ILCA, Addis- Abeba: 185-195.

BIROUK A., LEWALLE J., TAZI M.,

1991 – Le patrimoine végétal des provinces sahariennes du Maroc. Rabat, Actes et Doc. Scientif. et Techn. Inst. Hassan II, 76 p.

Bois et Forêts des tropiques, 1964 – 93.

BOUDET G.,

1970 – Manuel sur les pâturages tropicaux et les cultures fourragères. IEMVT, Maisons-Alfort, ministère de la Coopération, 258 p.

BOUDET G., DUVERGER E.,

1961 – Étude des pâturages naturels sahéliens. Le Hodh (Mauritanie). Paris, Vigot Frères, 161 p.

BOUDET G., LEBRUN J. P., DEMANGE R.,

1986 – Catalogue des plantes vasculaires du Mali. Études et Synthèses de l'IEMVT, n° 16, 480 p.

BOUDY P.,

1950 – Économie forestière nord-africaine. Monographies et traitement des essences forestières. Paris, Librairie Larose, t. II, fasc. II, 878 p.

BOUHOL P.,

1940 – Le pays des gommiers du Sud-Maroc. Bull. Soc Sc. nat. du Maroc, 20 : 1-36.

BOULOS L.,

1966 a – A natural history study of Kurkur oasis, Libyan desert, Egypt. IV. The vegetation. *Postilla*, 100: 1-22.

Boulos L.,

1966 b – Flora of the Nile Region in Egyptian Nubia. Feddes Repertorium, 73 (3): 184-215.

Boulos L.,

1977 – Studies on the flora of Jordan. 5. On the flora of El Jafr-Bayir Desert. Candollea, 32: 99-110.

Boulos L.,

1982 – Flora of Gebel Uweinat and some neighbouring regions of Southwestern Egypt. *Candollea*, 37: 257-276.

Boulos L.,

1983 – Medecinal plants of North Africa. Michigan, Reference Publications Inc. Algonac, 286 p.

Boulos L.,

1995 – Notes on Acacia. Studies in the Leguminosae of Arabia. I. Kew Bulletin, 50 (2): 327-337.

BOULOS L., LAHAM J.,

1977 – Studies on the flora of Jordan. 3. On the flora of the vicinity of the Aqaba gulf. *Candollea*, 32:73-80.

BRENAN J. P. M.,

1957 – Acacia tortilis (Forssk.) Hayne. Notes on Mimosoideae. III. Kew Bulletin, I (4): 68-89.

BRENAN J. P. M.,

1983 — Manual on taxonomy of Acacia species. Present taxonomy of four species of Acacia (A. albida, A. senegal, A. nilotica, A. tortilis). Rome, FAO, 47 p.

CAMPA B., GRIGNON C., GUEYE M., HAMON S., (éd.),

1998 – L'acacia au Sénégal. Paris, Orstom-Isra, 476 p.

CARDOSO C.,

1995 – Contribution à l'étude de la diversité génétique des Acacias sahéliens : l'Acacia tortilis ssp. raddiana au Sénégal. Thèse doct., univ. Paris-Sud, 225 p.

CHAUDHARY S.A.,

1983 – Acacia and other genera of Mimosoideae in Saudia Arabia. Saudi Arabia, Min. of Agric. and Water, Regional Agric. and Water Research Center Rihjadh, 87 p.

CHEVALIER A.,

1928 – Révision des Acacias du Nord, de l'Ouest et du Centre africain. Rev. de Bot. Appl. et d'Agron. Colon., 8 (77) : 123-130.

COLONNA J.-P., BRAUDEAU E., DANTHU P., KANE I.,

1993 – Effets du stress hydrique chez les végétaux. Application à trois espèces du genre Acacia. Bois et Forêts des Tropiques, 238: 25.

CORNET A.,

1960 – Encore l'arbre du Ténéré. Simple observation sur la genèse des buttes sableuses à squelette végétal. Bull. Liaison Sah., 11 (39): 244-246.

CORTI R.,

1942 – Flora e vegetazione del Fezzan e della regione di Gat. Reale Societa Geographica Italiana, Firenze, 505 p., 32 pl., 1 carte.

COUGHENOUR M. D., ELLIS J. E., SWIFT D. M., COPPOCK D. L., GALVIN K., MAC CABE J. T., HART T. C.,

1985 – Energy extraction and use in a nomadic pastoral ecosystem. *Science*, 230 (4726): 619-625.

COURNAND G.,

1958 – Aoulef et le Tidikelt occidental : étude historique, géographique et médicale. *Arch. Inst. Pasteur*, 36 (3) : 370-406.

CROWFOOT G.M.,

1929 – Flowering plants of the Northern and Central Sudan. Leominster (UK). The Orphans Press Ltd.

DALE I.R., GREEWAY J.P.,

1969 – Kenya trees and shrubs. Nairobi, Buchaman's Kenya States Ltd., 295 p.

DAUMONT F.,

1957 – J'ai vu l'arbre du Ténéré. Science et Voyage, 139 : 42-47.

DIOUF M.,

1996 – Étude du fonctionnement hydrique et réponses à l'aridité des ligneux sahéliens. Cas de Acacia raddiana en zone soudanosahélienne du Sénégal. Thèse de 3° cycle, UCAD Dakar, 172 p.

DIOUF M., GROUZIS M.,

1996 — Natural distribution of Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan in Senegal: ecological determinism. Internat. Tree Crops Journal, 9:69-75.

Direction des Forêts,

1931 – Les Forêts de la Tunisie. Imp.V. Berthod Bourg., 183 p., 2 cartes.

Do F., ROCHETEAU A., DIAGNE A. L., GROUZIS M.,

1998 – « Flux de sève et consommation en eau d'Acacia tortilis dans le Nord Ferlo ». In Nef C., Grignon C., Gueye M., Hamon S., éd.: L'Acacia au Sénégal, Paris, Orstom/Isra, coll. Colloques et séminaires : 63-80.

DOUMET ADANSON N.,

1887 – Rapport sur une mission botanique exécutée en 1884 dans la région saharienne, au nord des grands chotts et dans les îles de la côte orientale de la Tunisie.
Paris, Imprimerie nationale, 124 p.

EL AMIN H. M.,

1973 – Sudan Acacias. Bulletin Forest Research Inst., 1:64 p.

EL AMIN H. M.,

1976 – Geographical distribution of the Sudan Acacias. *Bull. Forest Research Institute*, Khartoum, n° 2.

EL AMIN H. M.,

1992 – Trees and shrubs of Sudan. Exeter, Ithaca Press, 484 p.

EL DEMERDASCH M.A., HEGAZY A. K., ZILAY A. M.,

1995 – Vegetation-soil relationship in Tihamah coastal plains of Jazan region, Saudi Arabia. *Journ. of Arid Environments*, 30 (2): 161-174.

Ethiopia Forest Research Centre,

1986 – Growth of some forest trees in Ethiopia and suggestion for species selection in different climatic zones. Ethiopia, Forestry Research Centre, Notes n° 2,52 p.

FAGG C.W.,

1991 – Acacia tortilis : fodder tree for desert sands. NFT Highlights, NFTA 91-01, 2 p.

FAGG C.W., BARNES R.D.,

1990 – African Acacias: study and acquisition of the genetic resources (1 May 1987-1 May 1990), Final Report. ODA Research Scheme R.4348, Oxford University.

FAGG C. W., GREAVES A.,

1990 – Acacia tortilis 1925-1988. Annoted Bibliography n° F 41. Oxford University, CAB International, 36 p.

FAO.

1986 – Acacia tortilis subsp. raddiana (Savi) Brenan. Databook on endangered tree and shrub species and provenances. FAO Forestry Paper, 77 (6): 42-47.

FAUREL L., COLLENOT A., DUBUIS A.,

1960 – Note sur la flore du Tassili N'Ajjer. Bull. Soc. Hist. Nat. Afr. Nord, 51: 233-254.

FLAMAND G. B. M.,

1896 – Les gommiers dans le Sahara oranais. Bull. Soc. Geogr. Commerc., 18:9-10.

FLORET C., LE FLOC'H E., PONTANIER R.,

1986 – « La désertification en Tunisie présaharienne ». In : Désert et montagne au Maghreb, Hommage à J. Dresch. Revue de l'Occident musulman et de la Méditerranée, 41-42 : 291-326.

FOURNIER C.,

1995 — Fonctionnement hydrique de six espèces ligneuses coexistant dans une savane sahélienne (Région du Ferlo, Nord-Sénégal).
TDM, Paris, Orstom, 130 p.

FRANKENBERG P.,

1978 – Lebensformen und Florenelemente im Nordafrikanichen Trockenraumes. Vegetatio, 37 (2): 91-100.

FRANKENBERG P., KLAUS D.,

1980 – Atlas der Pflanzenwelt des Nordafrikanischen Trockenraumes. Arbeiten aus den geographischen Instituten der Universität Bonn, 256 p.

GAST M.,

1968 – Alimentation des populations de l'Ahaggar. Étude ethnographique. Paris, Mémoire Centre d'anthropologie, préhist. ethnogr. Alger VIII, 475 p.

GAYE A., SALL P. N., SAMBA S. A. N.,

1998 – « Bilan des recherches sur les introductions d'acacias australiens au Sénégal ». In Nef C., Grignon C., Gueye M., Hamon S., éd.: L'Acacia au Sénégal, Paris, Orstom/Isra, coll. Colloques et séminaires : 137-158.

GEERLING C.,

1987 — Guide de terrain des ligneux sahéliens et soudano-guinéens.

Wageningen, Agricultural Univ., 340 p.

GILLET H.,

1981 – Girafe et Acacia, une heureuse association. Le Courrier de la Nature, 71 : 15-21.

GOSSEYE P.,

1980 – « Introduction of browse plants in the Sahelo-Sudanian zone ». In : Le Houérou H. N., ed : Browse in Africa, Addis-Abeba, ILCA : 393-397.

GOUDIABY V. C.A.,

1998 – Phénologie d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan var. raddiana dans le Nord-Ferlo au Sénégal. DEA, univ. Cheikh Anta Diop, Dakar., 52 p.

GREAVES A.,

1984 – Acacia tortilis covering the literature from 1925 to 1982. Commonwealth Agricultural Bureaux, Annoted Bibliography, n°F37, 50 p.

GREUTER W., RAUS T.,

1989 – Med-Checklist notulae 15. Willdenowia, 19:27-48.

GRONDARD A.,

1964 – La végétation forestière au Tchad. Bois et Forêts des Tropiques, 93 : 15-34.

GROUZIS M.,

1984 – Restauration des pâturages sahéliens. Synthèse des travaux de reboisement dans la région de Markoye (Burkina Faso). Rapport multigraph., ORD-Sahel-Orstom-FED, Ouagadougou, 26 p.

GROUZIS M., DIOUF M., BERGER A., ROCHETEAU A.,

1998 – « Fonctionnement hydrique et réponses des ligneux sahéliens à l'aridité ». In Nef C., Grignon C., Gueye M., Hamon S., éd.: L'Acacia au Sénégal, Paris, Orstom/Isra, coll. Colloques et séminaires: 47-61.

GRUENBERG-FERTIG I.,

1954 – On the « soudano-deccanian » element in the flora of Palestine. Palestine Journal of Botany, Jerusalem series, 6 (3): 234-240.

GUFU OBA,

1998 – Effects of excluding goat herbivory on Acacia tortilis woodland around pastoralist settlements in the northwest Kenya. Acta Oecologica, 19 (4): 395-404.

GUINEA E.,

1945 — « La vegetación lenosa y los pastos del Sahara español ». In : Aspecto forestal del desierto, Madrid, Inst. Forestal de Investigaciones y Experiencias, 152 p.

GUINET P., VASSAL J.,

1978 – Hypothesis on the differentiation of the major group in the genus Acacia (Leguminosae). Kew Bull., 32 (3): 509-527.

GUINET P.,

1969 – Les Mimosacées. Étude de palynologie fondamentale : corrélations, évolution. Thèse Fac. Sc. Toulouse, 293 p., 20 pl.

GYPTA R. K., SAXENA S. K., DUTTA B. K.,

1973 – Germination, seedling behaviour and phytomass of some acacias in the nursery stage. *Indian Forester*, 99 (6): 353-358.

HALEVY G., ORSHAN G.,

1972 a – Ecological studies on Acacia species in the Negev and Sinai.
I. Distribution of Acacia raddiana, A. tortilis and A. gerrardii ssp. negevensis as related to environmental factors. Israel J. of Botany, 21: 197-208.

HALEVY G., ORSHAN G.,

1972 b – Ecological studies on Acacia species in the Negev and Sinai. II. Phenology of Acacia raddiana, A. tortilis and A. gerrardii ssp. negevensis. Israel J. of Botany, 22 (2): 120-139.

HEEMSTRA H. H., AL HASSAN H. O., AL MINWER F. S.,

1990 – Plants of Northern Saudi Arabia (an illustrated guide). Min. of Agric./ FAO, 357 p.

HELLER D., HEYN C. C.,

1990 – Conspectus Florae Orientalis. Jerusalem, Rosales-Podostemales, fasc. 5, 79 p.

HERNANDEZ-PACHECO E., HERNANDEZ-PACHECO F., ALIA MEDINA M., VIDAL BOX C., GUINEA LOPEZ E.,

1949 — El Sahara Espanol. Estudio geológico, geográfico y botánico. Inst. de Estudios Africanos, 808 p.

HOSNI H.A., HEGAZY A.K.,

1996 – Contribution to the flora of Asir, Saudi Arabia. *Candollea*, 51 (1):169-202.

HUSSAIN R.W.,

1989 – Modelling for determination of biomass of Acacia nilotica, Acacia albida, Acacia tortilis and Prosopis cineraria in arid areas. Pakistan Journal of Forestry, 39 (4): 183-198.

JAAFAR B., ALIFRIQUI M.,

1994 – « Les steppes à Acacia raddiana (Savi) dans la moyenne vallée du Draa : leur écologie et leur intégration dans un programme de lutte contre la désertification ».

In : Arbre et Développement, Marrakech, 2º Journée de l'arbre, avril 1994 : 54-58.

JACKSON J. K.,

1966 – Field key of Sudan. Forest Dept. UNDP n° 3, 11 p.

JAIN R. C., TRIPATHI S. P., KUMAR V. S. K., KUMAR S.,

1996 – Volume tables for Acacia tortilis plantations based on data collected from KJD Abadi plantation of Khajuwala Range Chattergarh Division, IGNP area Rajasthan. The Indian Forester, 122 (4): 316-322.

JAOUEN X.,

(s.d.) – Arbres, arbustes et buissons de Mauritanie. Nouakchott, Centre culturel français, coll. Connaissance de la Mauritanie, 113 p.

KALATDJI R., YOUNSI K.,

1994 – Contribution à l'étude de Acacia raddiana Savi. Cartographie au 1/87 000, structure et évolution des peuplements dans la région de Béchar, Taghit et Igli (Sud-Ouest algérien). Mémoire Ing., Univ. Sc. et Techn. H. Boumediene, Alger.

KANE I., ROCHETEAU A., GROUZIS M.,

1997 – « Les Acacias du Sénégal ». In Grouzis M., éd. : Réhabilitation des terres dégradées au nord et au sud du Sahara. Utilisation de légumineuses pérennes et des microorganismes associés pour l'établissement des formations pluristrates. Rapport final. Contrat Union européenne STD3, TS3*CT92-0047.

KARSCHON R.,

1961 – Contribution to the arboreal flora of Israël: *Acacia raddiana* Savi and *A. tortilis* Hayne. *La-Yaaran*, 11 (3-4): 6-16.

KARSCHON R.,

1975 – On the occurrence of Acacia raddiana Savi and A. albida Delile in Jéricho. Boissiera, 24 : 311-312.

Un arbre au désert, Acacia raddiana

KASALPLIGIL B.,

1956 – Plants of Jordan, with notes on their ecology and economic uses. Amman, Forest Dept., 130 p.

KAUL R. N.,

1983 – Some sylviculture aspects of sand dune afforestation. *International Tree Crop Journal*, 2 (2): 133-146.

KEAY R.W., ONOCHIE C. F.A., STANFIELD D.P.,

1964 - Nigeria trees.

Nigeria Dept. of Research, Ibadan, vol. II.

KEITH H. G.,

1970 – A preliminary checklist of Libyan flora. Libyan Arab Republic, Ministry of Agriculture, vol. I, 530 p.

KENNENNI L.,

1991 – Geography and phytosociology of Acacia tortilis in the Sudan.

Afr. J. Ecol., 29: 1-10.

KIREGER E. K., BLAKE T. J.,

1994 – Genetic Variation in dry matter production, water use efficiency and survival under drought in four Acacia species studied in Baringo, Kenya. Advances in GeoEcology, 27: 195-204.

KNAPP R.,

1973 – Die vegetation von Afrika unter Berücksichtigung von Umwelt, Entwicklung, Wirtschaft, Agrar- und Forstgeographie. Fischer, Stuttgart.

KORDOFANI M., INGROUILLE M.,

1991 – Patterns of morphological variation in the Acacia species (Mimosaceae) of northern Sudan. Bot Journ. of the Linnean Soc., 105 (3): 239-256.

LARRIBAUD J.,

1952 – Tindouf et le Sahara occidental. *Arch. Inst. Pasteur*, 30 (3): 239-256.

LAVAUDEN L.,

1927 a – Les forêts du Sahara. Rev. Eaux et Forêts, 65 (6): 265-277.

LAVAUDEN L.,

1927 b – Les forêts du Sahara. Rev. Eaux et Forêts, 65 (7): 329-341.

LAVAUDEN L.,

1927 c – Les forêts du Sahara. Revue Tunisienne, 33 (168): 68-94.

LAVAUDEN L.,

1928 – La forêt de gommiers de Bled Thala (Sud tunisien). Rev. Eaux et Forêts, 66 : 699-713.

LAVAUDEN L.,

1929 – La forêt de gommiers de Bled Thala (Sud tunisien). Bull. Dir. Agric. Comm. Tunis, 205 p.

LE FLOC'H E.,

1983 – Contribution à une étude ethnobotanique de la flore tunisienne. Tunis, Impr. Officielle, 402 p.

LE HOUÉROU H. N.,

1969 – Quatrième contribution à la flore libyenne. Bull. Soc. bot. Fr., 116: 279-284.

LE HOUÉROU H. N., ed.,

1980 – Browse in Africa. The current state of knowledge. Addis-Abeba, ILCA, 481 p.

LE HOUÉROU H. N.,

1995 – Bioclimatologie et biogéographie des steppes arides du nord de l'Afrique. Diversité biologique, développement durable et désertification. CIHEAM/ACCT, Zaragosa, 396 p.

LEBRUN J. P., AUDRU J., CESAR J.,

1989 — Catalogue des plantes vasculaires de la République de Djibouti. Études et synthèses de l'IEMVT, n° 34, 277 p.

LEFEBVRE H.,

1889 — Exposition Universelle de 1889. Notice sur les Forêts de Tunisie et catalogue raisonné des collections exposées par le Service des Forêts. Tunis, Direction des Forêts, Impr. Française B. Borrel, 230 p.

LEREDDE C.,

1959 – Étude écologique et phytogéographique du Tassili N'Ajjer. Alger, Trav. Inst. Rech. Sahar., 455 p.

LESOURD M.,

1959 – L'arbre du Ténéré. Bull. Liaison Sah., 36 : 300-302.

LETHEILLEUX J.,

1948 – Le Fezzan, ses jardins, ses palmiers. *Publication I.B.L.A.*, 12:1-250.

LEVI G.,

1974 – Acacias in the Negev and Sinaï. Sudanian elements in the desert (en hébreu). Nature and Country, 14 (3): 129-132.

LHOTE H.,

1961 – Au sujet de l'arbre du Ténéré. Bull. Liaison Sah., 41: 49-54.

LOCK J. M.,

1989 – Legumes of Africa. A checklist. Kew, Royal Bot. Gardens, 620 p.

LOTI P.,

1997 – *Voyages (1872-1913)*. Paris, Robert Laffont, coll. Bouquins, 1 558 p.

MAIRE R.

1929 – Contribution à l'étude de la flore de l'Afrique du Nord. *Bull. Soc. Hist. nat.* d'Afr. du Nord, 20 (1): 12-42.

MAIRE R.,

1931 – Les progrès de la connaissance botanique en Algérie depuis 1830. Paris, Masson, coll. Centenaire de l'Algérie, 229 p.

MAIRE R.,

1933 – « Études de la flore et de la végétation du Sahara Central I ». In : Mém. Soc. Hist. Nat de l'Afrique du Nord n° 3, Mission scientifique au Hoggar II : 1-272.

MAIRE R.,

1936 – Contribution à l'étude de la Flore du Sahara occidental. Fascicule 7 : 344-354.

MAIRE R.,

1940 – « Études de la flore et de la végétation du Sahara Central III ». In : Mém. Soc. Hist. Nat de l'Afrique du Nord n° 3, Mission scientifique au Hoggar : 273-433.

MANDAVILLE J. P.,

1984 – Studies in the flora of Arabia XI: Some historical and geographical aspects of a principal floristic frontier. Notes from the Royal Botanic Garden Edinburg, 42 (1): 1-15.

MARIAUX A.,

1975 – Essai de dendroclimatologie en climat sahélien sur Acacia raddiana. Bois et Forêts des Tropiques, 163: 27-35.

MARTIN J. F.,

1984 – Recherche sur les Acacias du Tchad. Bibliographie et étude socio-économique. Thèse 3^e cycle, univ. de Toulouse, 331 p.

MARTIN F., VASSAL J.,

1989 – Distribution maps of Acacia in Chad. Bull. internat. group for the study of Mimosoideae, 17: 132-155.

MASAMBA C.,

1994 – Presowing seed treatments on four African Acacia species: appropriate technology for uses in forestry for rural development. Forest Ecology and Management, 64 (2-3): 105-109.

MATHEZ J., SAUVAGE Ch.,

1974 – Catalogue des végétaux vasculaires de la Province de Tarfaya. Contribution à l'étude scientifique de la Province de Tarfaya. Cahiers de la Rech. Agron., 33: 117-257.

MAUNY R.,

1960 – L'arbre du Ténéré 1959. Bull. Liaison Sah., 11 (38): 174-176.

MEIGS P.,

1953 – World distribution of arid and semi-arid homoclimates. Reviews of Arid Zone Hydrology, Arid Zone Programme, Paris, Unesco: 203-209.

Mém. Inst. Franç. Afrique noire, 1940 – 2

MENWYELET ATSEDU, COPPOCK D. L., DETLING J. K.,

1994 – Fruit production of Acacia tortilis and Acacia nilotica in semi-arid Ethiopia. Agroforestry Systems, 27: 23-30.

METRO A., SAUVAGE Ch.,

1955 – Flore des végétaux ligneux de la Mamora. Rabat, Soc. des Sc. Nat. du Maroc, coll. La nature au Maroc, 502 p.

MILTON S. J.,

1983 – Acacia tortilis subsp. heteracantha productivity in Tugela dry bushveldt: preliminary results. Bothalia, 147: 767-772.

MONOD Th.,

1974 – Note sur quelques Acacias d'Afrique et du Proche-Orient. *Bull. de l'I.F.A.N.*, sér. A., 36 (3): 642-669.

MONOD T.,

1987 – On two morphological anomalies of Acacia tortilis ssp. raddiana in the Libyan desert. Bull. internat. group for the study of Mimosoideae, 15:86-87.

MOREAU P.,

1947 – Des lacs de sel aux chaos de sable. Le pays des Nefzaouas. *Publications de l'Inst. Belles Lettres Arabes*, Tunis, n° 11, 206 p., 3 cartes

MUTHANA K. D., ARORA G. D.,

1980 – Performance of Acacia tortilis (Forssk.) Hayne, under different habitats of the Indian arid zone. Annals of Arid Zones, 1-2 (19): 110-118.

N'DIAYE I.,

1992 – Étude expérimentale sur la propagation d'Acacias gommiers. Thèse Doct., Fac. Sc. et Techn. St-Jérôme, Marseille, 199 p.

NABAL A.,

1973 – Feu l'arbre du Ténéré. Le Saharien, 61 (3-4).

NÈGRE R.,

1974 – Les pâturages de la région de Syrte (Libye) : projet de régénération. Feddes repertorium, band 85, 3 (59) : 185-243.

NEUMANN K.,

1987 – Jebel Tageru. A contribution to the flora of southern Libyan Desert. Journal of Arid Environments, 12:27-39.

NEW T. R.,

1984 – A biology of Acacias. Oxford Univ. Press.

NOAD T., BIRNIE A.,

1989 - Trees of Kenya. Nairobi, 308 p.

NONGONIERMA A.,

1975 – Contribution à l'étude des Acacias d'Afrique occidentale. *Boissiera*, 24a : 271-277.

NONGONIERMA A.,

487 -642.

1976 – Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale. II. Caractères des inflorescences et des fleurs. Bull. de l'I.F.A.N., sér. A., 38 (3):

NONGONIERMA A.,

1977 a — Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale. III. Édaphologie. Bull. de l'I.F.A.N., sér.A., (39) 1:23-74.

Nongonierma A.,

1977 b — Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale. IV. Distribution climatique des différents taxa.

Bull. de l'I.F.A.N., sér. A., (39) 2:318-339.

OULD FADHILY M.,

1992 – Contribution à l'étude phytoécologique, biogéographique et forestière des peuplements à Acacia (A. raddiana, A. ehrenbergiana) et Balanites aegyptiaca dans le Dra (Maroc). Mém. de 3^e cycle, École nat. Forest. d'Ing. de Salé, 98 p.

OZENDA P.,

1958 – La végétation ligneuse du Sahara. Cah. Rivières et Forêts, 9/10 : 65-75.

PAMPANI R.,

1914 – Plantae Tripolitanae. La missione Franchetti in Tripolitania, (II Gebel). Firenze, Appendice I, 328 p.

PAMPANI R.,

1931 – Prodromo della Flora Cirenaica. Forli, Min. delle Coloni, 577 p.

PANDE M., TANDON V. N., RAWAT H. S.,

1989 – Biomass production and nutrient distribution in five years old plantation ecosystems of fodder species in Rajasthan. *The Indian Forester*, 115 (11): 793-801.

PASSAGER P., BARBANÇON S.,

1956 – Taghit (Sahara oranais) : étude historique, géographique et médicale. Arch. Inst. Pasteur, 34 (3) : 404-475.

PELLEW R.,

1980 – Production et consommation des fourrages ligneux d'Acacia pour la production de protéines. Colloque sur les fourrages ligneux en Afrique. ILCA, Addis-Abeba: 223-231.

PELLISSIER E.,

1853 – Description de la Régence de Tunis. Tunis, Bouslama, 2^e éd., 455 p.

PIOT J., NEBOUT J.-P., NANOT R., TOUTAIN B.,

1980 – Utilisation des ligneux sahéliens par les herbivores domestiques. Études quantitatives dans la zone sud de la Mare d'Oursi (Haute-Volta). Paris, CTFT-IEMVT, 34 p.

Post G. E.,

1932 – Flora of Syria, Palestine and Sinai. Beirut, American Press, vol. I, 2^e éd., 657 p.

PRASAD R.,

1991 – « Sylviculture and utilisation. Use of Acacias in wastelands reforestation». In: Proceedings of Advances in tropical Acacia Research, Bangkok, Thailand, John W. Thurnbule: 96-102.

QUÉZEL P.,

1963 – Les peuplements d'Acacia au Sahara nord-occidental. Étude phytosociologique. Trav. Inst. Rech. sah., 20: 80-120.

QUÉZEL P.,

1965 – La végétation du Sahara, du Tchad à la Mauritanie. Gustav Fisher Verlag/Masson et Cie, 335 p.

QUÉZEL P., SANTA S.,

1962/1963 — Nouvelle flore de l'Algérie et des régions désertiques méridionales. Paris, CNRS, vol. I, 566 p.

QUÉZEL P., SIMONNEAU P.,

1963 – Les peuplements d'Acacia du Sahara nord-occidental. Étude phytosociologique. Trav. Inst. Rech. Sahariennes, 20: 79-121.

QUÉZEL P., BARBÉRO M., BENABID A., RIVAS-MARTINEZ S.,

1995 – Les structures de végétation arborée à Acacia sur le revers méridional de l'Anti-Atlas et dans la vallée inférieure du Draa (Maroc). Phytocoenologia, 25 (2): 279-304.

Revue Bot. Appl. Agric. Trop., 1937 – 17 (195).

Ross J. H.,

1973 – Towards a Classification of the African Acacias. *Bothalia*, 11 (1-2): 107-113.

Ross J. H.,

1979 – A conspectus of the African Acacia Species. Memoirs of the Botanical Survey of South Africa, Botanical Research Inst., 44: 155 p.

Ross J. H.,

1981 – An analysis of the African Acacia species: their distribution, possible origins and relationships. Bothalia, 13 (3): 389-413.

SAHNI K. C.,

1968 – Important trees of the Northern Sudan. UNDP/FAO. Khartoum, Forestry Research and Education Centre, 123 p.

SANUSI S. S.,

1989 – A note on records of Acacia species in West Tropical Africa by countries.

Bull, IGSM., 17: 122-131.

SAUVAGE C.,

1947 – Notes botaniques sur le Zemmour oriental (Mauritanie septentrionale). Mém. Office nat. anti-acridien, n° 2, 46 p.

SAUVAGE C ...

1948 – « Les environs de Goulimine, carrefour botanique ». In : Vol. jubilaire de la Soc. Sc. nat. du Maroc : 107-146.

SCHIFFERS H.,

1971 – Die Sahara und ihre Randgebiete. Darstellung eines Naturgrossraumes. 1. Physiographie. Weltforum, München, 664 p.

SCHULZ E., AMADOU A.,

1992 – Leben in der Südlichen Sahara. Die traditionelle Nutzung der Vegetation im Nord-Niger. Abschussbericht zum Forschungsv. 1/52 749, 188 p.

STOCKER O.,

1970 – Der Wasser-und Photosynthese-Haushalt von Wüstenpflanzen der mauretanischen Sahara. Regengrüne und immergrüne Bäume. Flora, 159 (6): 539-572.

TÄCKHOLM V.,

1974 – Student's flora of Egypt. Cairo Univ., 2e éd., 888 p.

TERRIBLE M.,

1984 – Essai sur l'écologie et la sociologie d'arbres et arbustes de Haute-Volta. Bobo Dioulasso, Librairie la Savane, 257 p.

TOURE FALL S.,

1991 – « Arbres et arbustes fourragers dans l'alimentation des ruminants en zones sahélienne et soudanienne. Valeur nutritive d'espèces appétées (Sénégal) ». In: Actes IVe Congrès Internat. des Terres de Parcours, Montpellier (France), vol. II: 670-673.

ULLMANN I.,

1985 – Diurnal courses of transpiration and stomatal conductance of Sahelian and Saharan acacias in the dry season. *Flora*, 176 (5/6): 383-409.

VASSAL J.,

1972 – Apport des recherches ontogéniques et séminologiques à l'étude morphologique, anatomique et phylogénique du genre Acacia. Bull. Soc. Hist. Nat. Toulouse, 108 (1-2): 125-247.

VASSAL J.,

1981 – « Acaciae ». In Polhill R. M., Raven P.H., eds: Advances in Legume Systematics, 1:169-171.

VASSAL J.,

1998 – « Les acacias au Sénégal :Taxonomie, écologie, principaux intérêts ». In Campa B., Grignon C., Gueye M., Hamon S., éd. : L'acacia au Sénégal, Paris, Orstom/Isra : 15-33.

VASSAL J., LESCANNE N.,

1976 – Cytologie et taxonomie dans le genre Acacia. *Bull. Soc. Hist. Nat. Toulouse*, 115:101-110.

VASSAL I., DIONE M.,

1993 – « Les acacias gommiers au Sahel : exsudation gommière et production – perspectives ». In : Natural resources and social conflicts in the Sahel, Denmark, 5th Sahel Workshop, Sandberg : 180-192.

VASSAL J., BRENAN J. P. M., ELAMIN H. M., LIBERATO M. C., SCHREIBER A., WICKENS G. E.,

1977 – Distribution maps of African Acacia species. Bull. Groupe Intern. Étude Mimosoideae, 5: 31-45.

VON MAYDELL H. J.,

1978 – Trees and shrubs species for agroforestry systems in the sahelian zone of Africa. *Plant Research and Development*, 17: 44-59.

VON MAYDELL H. J.,

1983 — Arbres et arbustes du Sahel. Leurs caractéristiques et leurs utilisations. Eschborn, Schriftenreihe der GTZ No. 147, 531p.

WICKENS G.E., SEIF EL DIN A.G., SITA G., NAHAL I.,

1996 – Rôle des acacias dans l'économie rurale des régions sèches d'Afrique et du Proche-Orient. Rome, FAO, Cahier FAO Conservation, n° 27, 152 p.

ZOHARY M.,

1951 – The arboreal flora of Israel and Transjordan and its ecological and phytogeographical significance.
University of Oxford Institute,
Imperial Forestry Inst., paper 26, 61 p.

ZOHARY M., ORSHAN, G.,

1956 – Ecological studies in the vegetation of the Near East deserts. II. Wadi Araba. *Vegetatio*, 7: 15-37.

ZOHARY M.,

1972 – Flora Palaestina. Jerusalem, The Israel academy of Sciences and Humanities, Part II, 498 p.

La génétique d'Acacia raddiana

A. BORGEL C. CARDOSO D. SANÉ M.-H. CHEVALLIER

Résumé

Parmi les 4 sous-espèces d'Acacia tortilis, seule A. tortilis subsp. raddiana est présente au nord et au sud du Sahara où elle est l'une des dernières dicotylédones pérennes ligneuses survivant dans cette région en désertification. La structure génétique de cette espèce a été définie à partir d'une étude locale sénégalaise sur 107 arbres répartis en 15 sites et d'une étude sur l'aire de répartition africaine avec 10 sites de 10 à 25 arbres chacun englobant les 4 sous-espèces. La variabilité génétique observée est importante ($H_e = 0.42$ à 0.49), notamment du fait de la polyploïdie rencontrée. La différenciation entre les peuplements est faible ($G_{st} = 0.03 \text{ à } 0.11$). L'identification des meilleurs individus comme semenciers d'élite pour les opérations de reboisement est de ce fait rendue très difficile. Aussi, une stratégie clonale est proposée mettant en œuvre des techniques de culture in vitro afin de mettre en place des essais multiclonaux d'évaluation génétique. L'aptitude au microbouturage présente un effet famille important, les taux de multiplications obtenus en 3 cycles de subcultures s'étendent de X4 à X10 suivant l'origine génétique du clone. La morphologie du système racinaire qui se met en place sur les microboutures est déterminée par la nature et le mode d'application de l'auxine utilisée pour favoriser l'enracinement. Seul l'ANA (53,7 µM) associé à la kinétine (0,0465 µM) en traitement inducteur de 10 jours au maximum a permis d'obtenir un enracinement robuste des vitroplants. Un protocole d'embryogenèse somatique est présenté pour obtenir rapidement un plus grand nombre de vitroplants enracinés. I 406 embryons somatiques ont été créés à partir d'explants

cotylédonnaires et de tissus d'embryons zygotiques cultivés en présence de 2,4-D (9,05 μ M) pendant 100 jours puis alternativement sur des milieux sans 2,4-D mais enrichis en BAP (2,22 à 4,44 μ M) et AIB (0,25 à 2,46 μ M) pendant 30 jours.

Mots-clés:

DIVERSITÉ GÉNÉTIQUE, ISOZYMES, POLYPLOÏDE, IN VITRO, EMBRYOGENÈSE SOMATIQUE.

Abstract

Of the 4 subspecies of Acacia tortilis, only A. tortilis subsp. raddiana is present in the north and south of the Sahara where it is one of the last dicotyledonous perennial woody plants surviving in this area which is progressively turning into desert. The genetic structure of this species was defined starting from firstly a local study in Senegal of 107 trees distributed in 15 sites, and secondly a study of the distribution area throughout Africa represented by 10 sites of 10 to 25 trees each, including the 4 subspecies. The genetic variability observed is significant ($H_0 = 0.42$ to 0.49), in particular due to polyploidy phenomena encountered. The differentiation between the populations is weak (Gst = 0.03 to 0.11). The identification of the best individuals as elite seed-bearers for afforestation operations is thus very difficult. A clonal strategy is therefore proposed implementing in vitro culture techniques in order to set up multiclonal tests for genetic evaluation. Aptitude for in vitro micropropagation displays a significant family effect. The multiplication rates obtained after 3 cycles of subculture extend from X4 to X10 according to the genetic origin of the clone. The morphology of the root system established on microcuttings is determined by the nature and the mode of application of the auxin used to support the rooting. Only NAA (53.7 μ M) associated with kinetin (0.0465 μ M) applied for a maximum inductive period of 10 days gives a robust rooting of vitroplants. A protocol of somatic embryogenesis is presented here which makes it possible to quickly obtain a greater number of rooted vitroplants. A total of 1 406 somatic embryos was produced starting from cotyledonary explants and tissues of zygotic embryos cultivated in the presence of 2.4-D $(9.05 \mu M)$ for 100 days then alternately on media without 2.4-D but supplemented with BAP (2.22 to 4.44 μ M) and AIB (0.25 to 2.46 μ M) for 30 days.

Keywords:

GENETIC DIVERSITY, ISOZYMES, POLYPLOIDY, IN VITRO, SOMATIC EMBRYOGENESIS.

Abréviations

2,4-D	acide 2,4-dichloro phénoxy acétique	MS	solution minérale de Murashige et Skoog.
ABA	acide abscissique		Physiol. Plant. 15: 473-497 (1962)
ADN	acide désoxyribonucléique	VA	solution minérale
AIB	acide B-indole butyrique		de Von Arnold et Eriksson.
BAP	6-benzyl aminopurine		Can. J. Bot. 59: 870-874 (1981)

Introduction : diversité génétique et stratégie clonale

Dans le sous-genre Acacia, l'espèce A. tortilis regroupe quatre sous-espèces : spirocarpa, heteracantha, tortilis, raddiana. Seule cette dernière est représentée au nord et au sud du Sahara. Malgré l'importance évidente de ces espèces dans l'économie rurale ou la stabilisation et la fertilité des sols (FAGG et STEWART, 1994), la variabilité génétique des populations naturelles est encore peu connue. Or, l'estimation de ce paramètre est un préalable indispensable à la définition de stratégies de conservation, de gestion, et d'utilisation des ressources forestières (BANRC, 1991). La régénération des forêts, qui se fait principalement par des graines issues des arbres in situ, dépend du maintien de cette diversité, en particulier pour faire face à des changements climatiques imprévisibles. Les programmes d'amélioration génétique exploitent la diversité génétique disponible dans les populations naturelles au travers d'essais en champ et d'analyses en laboratoire. Pour les premiers, les clones sont très utilisés en génétique des arbres pour évaluer la valeur génotypique et l'adaptabilité d'individus dits « d'élite ». Cependant, ce n'est pas encore le cas pour A. tortilis. Nous verrons pourquoi la structure de la diversité génétique d'A. tortilis subsp. raddiana conduit à aborder l'étude des génotypes par les clones et quelles technologies doivent être mises en œuvre pour cela. Au Sénégal, les marqueurs isoenzymatiques sont encore à l'heure actuelle les plus utilisés dans les études concernant les acacias. Ils sont réputés neutres, indépendants du milieu et de contrôle génétique simple.

Estimation et structure de la diversité génétique des marqueurs isozymiques

Deux études de variabilité génétique d'A. tortilis sont actuellement connues. La première a porté sur 10 sites de 10 à 25 arbres chacun représentant les 4 sous-espèces dans des régions très diverses (Israël, Kenya, Zimbabwe, Botswana, Niger et Sénégal) (OLNG'OTIE, 1991). La seconde a été conduite sur 107 arbres récoltés dans 15 sites de l'aire de répartition sénégalaise d'A. tortilis subsp. raddiana, seule sous-espèce présente au Sénégal (CARDOSO, 1995). Par leurs différences, ces deux approches montrent bien la difficulté de ce type d'étude, l'une ayant recueilli des données éparses et ponctuelles, l'autre ayant approfondi l'étude mais sur une aire restreinte et une seule sous-espèce.

Différents paramètres génétiques ont été utilisés pour quantifier la variabilité des populations : le nombre moyen d'allèles (A), l'hétérozygotie observée (H_o) , l'hétérozygotie théorique (H_e) , la différenciation entre populations (G_{ST}) et les distances génétiques.

Mesures de la diversité génétique

Différents paramètres génétiques sont fréquemment utilisés pour quantifier la variabilité isoenzymatique aux niveaux intra-espèce, intra-population et interpopulations (HAMRICK et al., 1992).

Mesures de la diversité génétique au niveau intra-population ou intra-espèce

- A : est le nombre moyen d'allèles ou de variants alléliques identifiés dans la population.
- **P**: le taux de polymorphisme est le nombre de locus polymorphes par rapport au nombre de locus étudiés.
- H_e : la diversité génétique de Nei exprime la probabilité pour que deux gènes tirés au hasard dans une population soient différents. Elle est définie par $H=1-\Sigma p_i^2$, où p_i est la fréquence de l'allèle i au locus considéré, H_e est équivalent à l'hétérozygotie théorique sous l'hypothèse de Hardy-Weinberg.

Ha: est la proportion de locus hétérozygotes observés par individu.

Mesures de la diversité génétique au niveau inter-populations

- F_{ST} : variance des fréquences alléliques entre populations ($\sigma_p^2/p_i(1-p_i)$, où σ_p^2 est la variance des fréquences alléliques entre les populations et p_i est la moyenne de la fréquence du i^e allèle. F_{ST} est calculé pour tous les locus.
- G_{ST} : défini au niveau d'un locus par $G_{ST} = 1 H_S/H_T$, où H_S est la moyenne sur toutes les populations des diversités génétiques intrapopulations; H_T est la diversité génétique totale sur l'ensemble des populations considérées comme une population unique. Dans le cas où plusieurs locus sont pris en compte, H_S et H_T sont les moyennes sur l'ensemble des locus des diversités intrapopulation et totale. G_{ST} est équivalent à F_{ST} multiallélique.

Distances génétiques

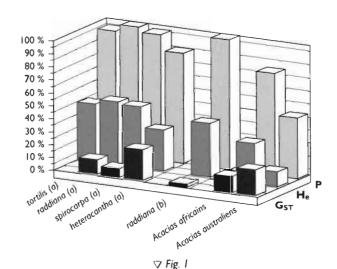
- I: identité génétique $\sum x_i y_i / (\sum x_i^2 \sum y_i^2)^{0.5}$ où x_i et y_i sont les fréquences du ie allèle dans les populations x et y. I varie de 0 (aucun allèle en commun) à 1 (identité des fréquences alléliques dans les populations x et y).
- D: distance génétique D = In/

Deux caractéristiques liées à l'espèce ont entraîné des difficultés d'analyse et d'interprétation. D'une part, le génotype maternel ne peut être déterminé, les échantillons de feuilles n'ayant pas donné de résultats fiables ; ainsi pour chaque arbre étudié, seuls sont disponibles les génotypes de ses descendants, individus demi-frères. D'autre part, A. tortilis est polyploïde (Ross, 1979 ; Oballa et Olng'Otie, 1993). Le nombre très élevé de bandes observées sur les zymogrammes confirme ces résultats. Par conséquent, l'interprétation des systèmes enzymatiques a reposé sur une hérédité tétrasomique des isozymes. La structure (nombre de locus et d'allèles) des zymogrammes obtenus est résumée pour les deux études dans le tableau I pour tous les systèmes enzymatiques analysés. Olng'Otie (1991) a mis en évidence 13 locus et 40 allèles, soit 2,5 allèles par locus polymorphe dans toutes les sous-espèces d' A. tortilis (tabl. II). Cardoso (1995) a observé 6 locus et 20 allèles, soit 2,4 allèles par locus polymorphe dans la sous-espèce raddiana.

Au niveau des sous-espèces, heteracantha apparaît en moyenne la moins polymorphe avec un taux de polymorphisme (P) de 85% et une diversité génétique (H_e) de 0.32 (fig. 1).

Au contraire, raddiana présente un taux de polymorphisme de 100 % quelle que soit la population et une diversité génétique de 0,49 (OLNG'OTIE, 1991) ou de 0,42

▼ Tableau I – Nombre de locus et d'allèles révélés pour les marqueurs isoenzymatiques étudiés par OLNG'OTIE (1991) et CARDOSO (1995).


Enzymes	Structure	(19	Ing'Otie 91) allèles	(19	Cardoso 95) allèles
Alcool déshydrogénases	dimérique	1	4		
Endopeptidases	monomérique			1	5
Estérasesmonomérique		1	4		
Glucose-6-phosphate déshydrogénases	dimérique	2	2		
Isocitrate déshydrogénases	dimérique	2	2	ı	4
Leucine aminopeptidases	monomérique			1	3
Malate déshydrogénases	dimérique	2	4 4		
Enzyme malique	dimérique	2	2 2		
6-phosphoglucose déshydrogénases	dimérique	2	4 3	I	3
Phosphoglucomutases	monomérique			2	3 2
Shikimate déshydrogénases	monomérique	1	4		
Total		15	38	6	20

√ Tableau II – Paramètres génétiques de diversité	
pour 13 locus de 10 populations d'Acacia tortilis (D'après OLNG'OTIE,	1991).

Population	N	P	Α	He
A. tortilis tortilis	165	92	2,50	0,447
A. t. raddiana	130	100	2,50	0,492
A. t. spirocarpa	218	97	2,53	0,464
A. t. heteracantha	202	84	2,45	0,316
Moyennes	179	93	2,49	0,430

N : nombre moyen d'individus par locus ; P : proportion de locus polymorphes (%) ;
A : nombre moyen d'allèles par locus ; He : index de diversité génétique.

(CARDOSO, 1995). La diversité se révèle donc supérieure à la diversité moyenne des arbres tropicaux (0,211) et des conifères (0,207) (BEVER et FELBER, 1992). Mais ces études ont trait essentiellement à des espèces diploïdes. Or, plusieurs travaux sur des espèces présentant plusieurs niveaux de ploïdie indiquent clairement que les populations diploïdes ont une diversité significativement inférieure à celle des populations tétraploïdes (SOLTIS et SOLTIS, 1993). Cette diversité élevée est attribuée à l'hérédité tétrasomique. Il faut noter pourtant que *Picea abies*, espèce diploïde, présente une diversité de 0,37 selon GOTTLIEB (1981), valeur proche de celle observée pour *A. tortilis* subsp. *heteracantha*. Par comparaison, les différentes espèces d'Acacia sont en moyenne polymorphes à 65 % (P variant de 13 % à 100 %) de leurs locus, avec une diversité génétique de l'ordre de 19 % (He = 2 % à 46 %)

Paramètres de diversité génétique (P), (H_e) et de différenciation (G_{ST}) chez Acacia tortilis ; comparaison avec l'ensembe des acacias africains et australiens.

(a) étude OLNG'OTIE (1991)

(b) étude CARDOSO (1995)

(CHEVALLIER et BORGEL, 1998). La variabilité génétique d'A. tortilis dépasse celle de l'ensemble des espèces africaines, qui sont en moyenne nettement plus variables que les espèces australiennes, avec un taux de polymorphisme de 79 % contre 47 % et une diversité génétique plus de deux fois supérieure (31 % contre 12 %) (fig. 1). Comme chez la plupart des acacias, la plus grande partie de la variabilité génétique se situe à l'intérieur des populations d'A. tortilis avec une différenciation plus forte chez heteracantha (fig. 1).

Il est toutefois difficile de comparer les variabilités entre espèces, les estimations des paramètres génétiques pouvant varier selon les auteurs à cause de problèmes méthodologiques liés au nombre et au choix des systèmes enzymatiques, à l'interprétation génétique des zymogrammes et à l'échantillonnage des populations. Ainsi les deux études menées sur A. tortilis montrent une grande hétérogénéité dans le nombre et les types d'enzymes pris en compte. Certaines catégories d'enzymes sont connues pour être plus variables que d'autres. Les hydrolases (estérases, aminopeptidases) sont toujours plus polymorphes que les déshydrogénases. Le nombre de systèmes analysés est alors d'autant plus important. HAMRICK et al. (1992) ont montré une forte corrélation entre le nombre de locus observés et la diversité génétique intra-population. Il est souvent recommandé d'utiliser au moins 50 locus (NEI, 1978), ce qui a été impossible chez tortilis à cause des difficultés techniques. De plus, l'interprétation génétique des zymogrammes peut varier selon les équipes de chercheurs pour une même espèce. La validité du contrôle génétique des isozymes ne peut se faire que par l'intermédiaire de croisements contrôlés, ce qui n'a pas été le cas chez A. tortilis. Le nombre et le choix des populations interviennent également dans la quantification et la structuration de la variabilité. Ainsi G_{st} varie de 2,5 % (CARDOSO, 1995) à 11 % (OLNG'OTIE, 1991) pour raddiana. Dans ce cas, le nombre et l'origine des populations interviennent ainsi que le nombre de locus pris en compte.

La polyploïdie semble apporter une diversité génétique observée significativement supérieure à celle du niveau diploïde. Plusieurs travaux dans ce sens ont été répertoriés par Soltis et Soltis (1993). L'acquisition d'un niveau de diversité plus élevé par la polyploïdisation pourrait être l'un des moyens utilisés par les espèces pour se maintenir dans des conditions climatiques qui évoluent. L'autopolyploïdie, qui a longtemps été considérée comme un événement défavorable pour l'évolution des espèces (LEVIN, 1983), apparaît de nos jours comme un élément positif majeur, comme en témoigne la découverte en nombre croissant d'espèces autopolyploïdes (Goldblatt, 1980; Lewis, 1980). Le doublement chromosomique entraîne, en plus d'une hétérozygotie plus élevée par rapport aux formes diploïdes, un plus grand nombre d'allèles pour une protéine donnée (TAL, 1980) et, par voie de conséquence, un plus grand nombre de formes protéigues lorsque la protéine est polymérique (SOLTIS et SOLTIS, 1993). Traduites en termes de potentiel d'adaptation, ces particularités des polyploïdes pourraient leur apporter des capacités à s'adapter bien supérieures à celles des diploïdes (SOLTIS et RIESEBERG, 1986), qui se manifestent par une distribution géographique plus étendue chez les polyploïdes (REESE, 1958). Ce cas est bien illustré dans le genre Acacia, où l'aire de répartition du sous-genre Acacia, qui contient principalement des

espèces polyploïdes, est nettement plus large que celle du sous-genre Aculeiferum, caractérisé par une majorité d'espèces diploïdes (ROSS, 1981). Toutefois, une meilleure tolérance des polyploïdes à des conditions écologiques et climatiques difficiles est contredite par STEBBINS (1985). Cet auteur attribue la forte proportion de polyploïdes dans un groupe de plantes à la fréquence de contacts secondaires entre populations diploïdes isolées. Par ces contacts, des combinaisons géniques bien adaptées ont été créées et maintenues par polyploïdie en favorisant l'hérédité tétrasomique et les appariements entre chromosomes homologues. Selon BRADSHAW et MCNEILLY (1991), la distribution d'une espèce dans des conditions climatiques variées traduit une différenciation intra-espèce liée à une évolution à moyen terme du climat (moins de 10⁴ ans) et non à une adaptation physiologique de l'espèce.

La stratégie clonale et la culture in vitro

Pour les arbres forestiers, la stratégie clonale recouvre deux finalités différentes. Dans un cas, le produit final est distribué sous forme de clones : c'est la foresterie clonale. Dans l'autre cas, le produit final est distribué sous forme de graines, mais le clonage a été utilisé à au moins une étape du programme de sélection ou de production des semences.

La foresterie clonale est une propagation végétative à grande échelle qui permet de diffuser du matériel amélioré rapidement et en conservant les caractères améliorés (exemples: l'eucalyptus et le peuplier). Or, la sélection génétique peut faire gagner 20 à 30 % sur les caractères sélectionnés dès la première génération sur les arbres forestiers sauvages (Burley, 1989). Pour être efficace en reforestation, la production clonale annuelle doit atteindre 10^6 ou 10^7 individus. En revanche, cette méthode risque de réduire la base génétique du matériel diffusé et d'augmenter ainsi le risque face aux attaques parasitaires ou aux changements climatiques (Hühn, 1992). En pratique, aucun programme n'utilise seulement un clone ou quelques clones. La plupart diffusent 10 à 100 clones différents dans la même région de plantation. Cette stratégie est utile pour les arbres forestiers à croissance rapide destinés à une exploitation industrielle. De plus, si la multiplication végétative *in vitro* est utilisée pour produire les clones, le matériel végétal diffusé peut être assaini de maladies virales.

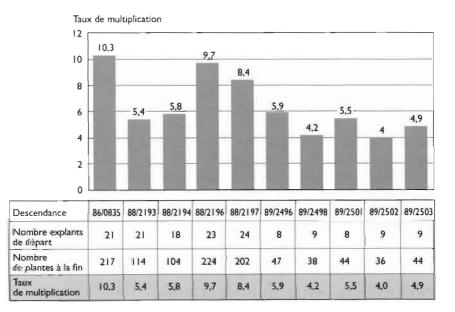
La deuxième finalité repose sur une stratégie où le clone n'est pas un produit mais un outil créé pour mieux comprendre la génétique des caractères sélectionnés et/ou pour produire des semences améliorées. Les clones permettent d'évaluer les génotypes en cours de sélection. La précision de l'estimation de la valeur génotypique et de l'interaction génotype-environnement est bien meilleure dans des essais multi-clonaux que sur des comparaisons de descendances ou de provenances dans le cas d'espèces à forte variabilité (MULLIN et al., 1992).

Les clones retenus sont ensuite utilisés en vergers grainiers comme parents des semences qui seront distribuées. Ce système permet d'obtenir un gain génétique significatif tout en rétablissant la variabilité génétique. Dans ce cas, le nombre d'individus par clone peut être de 10^3 à 10^5 sans obligation de production clonale annuelle. Enfin, les clones sont du matériel bien adapté aux études en laboratoire ou en pépinière pour la résistance aux stress et pour les interactions hôte-pathogène ou hôte-symbiote.

Dans le cas d'A. tortilis subsp. raddiana, les clones seront utiles pour étudier la valeur génétique des individus ainsi que les interactions génotype/milieu et génotype/symbiote. En revanche, il est clair qu'utiliser la propagation clonale de cette espèce en vue de reboisement au Sahel n'est pas réaliste. L'aire de répartition de l'espèce au Sénégal recouvre les 108 000 km² (10,8.106 ha) de la zone sahélienne et sahélo-soudanienne. Dans ce pays, le déboisement perdure depuis des décennies et a atteint 5,2.104 ha par an pendant la période 1981-1990 (SHARMA et al., 1994). Les surfaces à reboiser se comptent donc en millions d'hectares, c'est-à-dire en centaines de millions d'individus. Pour A. tortilis subsp. raddiana, seule la production de semences est compatible avec cette contrainte. De plus, nous verrons que le système racinaire du semenceau d'Acacia est mieux adapté que celui de la microbouture dans les conditions climatiques difficiles des zones sèches.

L'espèce ne présente aucune aptitude naturelle à la multiplication végétative. Aussi, il a été nécessaire de mettre au point une méthodologie de culture *in vitro* pour obtenir les clones. Deux voies ont été étudiées : le microbouturage et l'embryogenèse somatique.

Le microbouturage d'A. tortilis subsp. raddiana consiste à provoquer le développement de bourgeons axillaires préexistants, puis à enraciner les jeunes tiges ainsi obtenues (BORGEL et al., 1993 a ; NANDWANI, 1995). Ces opérations nécessitent souvent, pour les arbres, des milieux de cultures spécifiques avec des équilibres d'auxines et de cytokinines différents. La capacité d'organogenèse in vitro a été évaluée pour 10 familles d'A. tortilis subsp. raddiana. L'enracinement est une étape difficile du microbouturage des ligneux. Chez A. tortilis subsp. raddiana, les microboutures perdent rapidement l'aptitude à produire des racines après la deuxième subculture sur un milieu de multiplication. La réactivation de l'enracinement a été déterminée en fonction des traitements hormonaux appliqués.


L'embryogenèse somatique permet d'obtenir directement des jeunes plantes enracinées à partir de tissus dédifférenciés. Cette méthode peut décupler le taux de multiplication par rapport au microbouturage, mais elle implique une réorganisation profonde de l'expression du génome sous l'influence de substances de croissance exogènes comme le 2,4-D. Un protocole complet de régénération d'embryons somatiques d'A. tortilis subsp. raddiana a été mis au point (SANÉ, 1998).

Production de microboutures *in vitr*o : effets du génotype

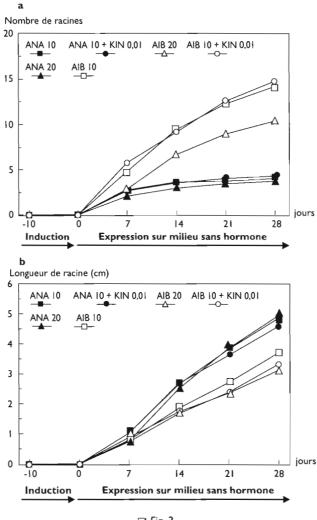
Les clones ont été produits à partir de 10 descendances demi-frères d'arbres récoltés vers les localités de Dahra et Souilène au Sénégal. 24 graines par

descendance sont mises à germer en condition aseptique après scarification et stérilisation. À un mois, un segment uninodal est prélevé sur chaque plante et constitue chaque tête de clone. Les dix descendances sont représentées par 150 clones (soit 8 à 24 clones par famille selon le taux de germination des graines de départ). Trois cycles de subcultures in vitro de deux mois sont conduits sur les milieux de multiplication dans des modules à éclairage, température et hygrométrie contrôlés. Le taux de multiplication de chaque famille à la fin de l'expérience est le nombre de plantes produites rapporté au nombre d'explants initiaux. Le nombre de plantes obtenues par descendance et les taux de multiplication sont présentés dans la figure 2. En tout, les 150 clones cultivés ont produit 1 070 plantes en 3 subcultures de deux mois. Le taux de multiplication moyen est de 7,1 pour cette période. Les descendances d'A. tortilis subsp. raddiana présentent des aptitudes à la multiplication végétative in vitro significativement différentes. La descendance 86/0835 de Souilène a un taux de multiplication de 10,3 alors que la descendance 89/2502 de Dahra montre un taux de 4,0 seulement pour la même période. On ne peut cependant pas y voir un effet de l'origine géographique puisque la descendance 88/2196 issue de Dahra a un taux de multiplication de 9,7 proche de 86/0835.

À l'intérieur de chaque descendance aussi, les différences d'aptitude à la multiplication végétative sont grandes. La meilleure descendance (86/0835) comprend 21 clones dont les taux de multiplication en six mois se répartissent de 3 à 32 suivant les clones.

∇ Fig. 2

Taux de multiplication de dix clones issus de familles différentes
d'Acacia tortilis subsp. raddiana après six mois de culture in vitro et trois cycles de subcultures.


A. tortilis subsp. raddiana peut donc être multiplié végétativement in vitro. La rapidité de production des clones est fortement déterminée par le génotype et par la descendance d'origine du clone. On peut cependant trouver des génotypes ayant un bon taux de multiplication dans la plupart des descendances. En revanche, l'aptitude à l'enracinement diminue rapidement au fur et à mesure des subcultures et devient le facteur limitant pour le transfert des microboutures au champ.

Enracinement de microboutures in vitro : effet du traitement auxinique

Les vitroplants ont été produits à partir de jeunes plantes de un mois élevées dans les mêmes conditions que pour le microbouturage. Deux cycles de subcultures in vitro de deux mois sur un milieu de multiplication ont été appliqués avant de commencer le prétraitement d'enracinement. Les vitroplants ont été transférés sur les milieux d'induction de la rhizogenèse avec six combinaisons d'auxines pendant 10 jours. Puis ils ont été transférés sur un milieu d'expression de la rhizogenèse sans hormone où le développement des racines a été observé pendant 4 semaines. Les courbes de croissance des racines ont été construites pour chaque condition d'induction.

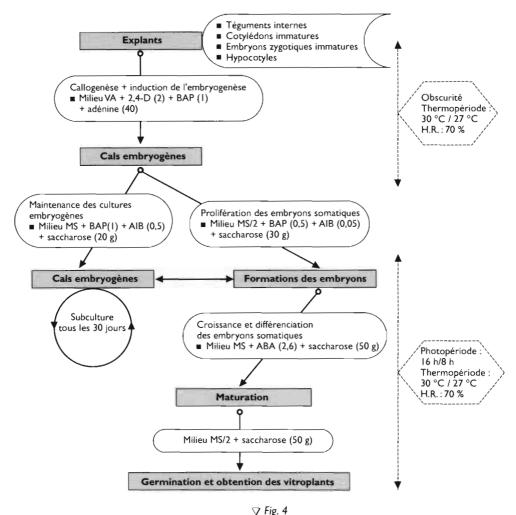
Il a été nécessaire de dissocier la phase de multiplication de celle de l'enracinement en utilisant des milieux très différents. De plus, nous avons montré que l'enracinement nécessite une action en deux temps : une phase d'induction par application d'auxine pendant une durée courte (10 jours au maximum) suivie d'une phase d'expression racinaire dans un milieu sans hormone.

La figure 3 montre la cinétique de croissance des racines (nombre de racines par explant sur la figure 3 a, longueur moyenne des racines par explant sur 3 b) à partir du repiguage sur milieu d'induction. Le système racinaire devient visible à partir de la date de transfert sur le milieu d'expression sans hormone. Le nombre de racines atteint son maximum (3 racines) dès le septième jour quand l'ANA a été utilisé comme hormone d'induction. Dans le même temps, l'induction à l'AIB combinée ou non avec la kinétine a déjà provoqué la croissance de 5,8 et 4,8 racines en moyenne. Ce nombre continue de progresser jusqu'à la fin de l'expérience (14 racines en moyenne à 28 jours). La nature de l'auxine induit aussi des différences de vitesses de croissance des racines pendant l'expérience (fig. 3 b). En fin d'expérience, les microboutures induites avec l'ANA présentent des racines plus longues (5,0 cm) que celles induites avec l'AIB (3,0 cm). En résumé, la morphologie générale du système racinaire est influencée par la nature de l'auxine utilisée comme inducteur. Avec l'ANA, le système racinaire ressemble à celui de l'acacia issu de semis avec l à 3 racines au maximum ; ce sont des pivots robustes et à croissance orthotrope rapide. Au contraire, l'AIB provoque la croissance d'un chevelu formé de nombreuses racines fines et plagiotropes. Le traitement inducteur de 10 jours avec l'ANA à 10 mg.l⁻¹ associé à la kinétine à 0,01 mg.l⁻¹ a permis de réactiver la rhizogenèse de microboutures d'A. tortilis subsp. raddiana qui présentent, en 4 semaines, 57 % d'enracinement avec un système pivotant à croissance rapide (SANÉ et al., 2001).

∇ Fig. 3

Développement in vitro du système racinaire de microboutures d'Acacia tortilis subsp. raddiana après dix jours d'induction avec six conditions de régulateurs de croissance.

(a) nombre de racines développées


(b) longueur moyenne des racines développées.

Embryogenèse somatique

La production d'embryons somatiques chez A. tortilis subsp. raddiana, A. nilotica subsp. tomentosa et adstringens a été obtenue à partir d'explants juvéniles issus de cotylédons immatures et de tissus d'embryons zygotiques grâce à un processus de régénération par embryogenèse indirecte faisant intervenir le passage par un stade cal. Le choix du type d'explant apparaît souvent comme la première étape importante qui conditionne la régénération. Généralement, les explants utilisés

sont des embryons zygotiques immatures, de jeunes feuilles, ou des segments de jeunes inflorescences. Chez les acacias, des cals embryogènes ont pu être obtenus à partir d'embryons zygotiques (BORGEL et al., 1993 b) ou à partir des endospermes de graines immatures d'A. nilotica (GARG et al., 1996) ou encore à partir de cotylédons d'A. albida (GASSAMA, 1996).

Dans nos conditions expérimentales, le protocole d'embryogenèse somatique mis en place comporte cinq étapes (fig. 4) : une étape de callogenèse et d'initiation de la proembryogenèse, une étape d'expression des structures embryogènes suivie d'une étape de multiplication des cals (ou phase d'augmentation de la biomasse

Procédé de régénération d'Acacia tortilis subsp. raddiana, A. nilotica subsp. tomentosa et A. nilotica subsp. adstringens par embryogenèse somatique à partir de cals obtenus directement sur explants cultivés in vitro.

des cellules dédifférenciées), une étape de maturation des embryons ou de mise en place de l'axe embryonnaire. La dernière étape est celle de l'élongation des axes caulinaire et racinaire des embryons, conduisant à l'obtention des vitroplants enracinés. Pour chaque étape, il a été nécessaire de déterminer les besoins physiologiques des tissus au cours du processus de régénération. (fig. 4).

C'est pourquoi la nature, la concentration et la séquence des régulateurs de croissance constituent le second facteur qui détermine, après le choix des explants, la compétence des tissus pour les différentes phases de l'embryogenèse.

La présence de 2,4-D est indispensable à la réactivation des cellules périvasculaires ainsi qu'à la formation de massifs méristématiques sur les explants cotylédonnaires d'A. nilotica et sur les embryons zygotiques d'A. tortilis. Nos résultats montrent en outre une très grande sensibilité des tissus des acacias vis-à-vis de cette auxine. La marge de variation de la concentration en 2,4-D est très réduite, la valeur optimale étant 2 mg.l⁻¹ dans des milieux sans charbon actif. Les tissus d'A. tortilis sont les plus rapides à initier une callogenèse (dès la première semaine de culture). La callogenèse démarre à la deuxième ou troisième semaine chez A. nilotica. En revanche, la formation de cals embryogènes exploitables prendra 60 jours pour A. nilotica et 100 jours pour A. tortilis.

Comme pour d'autres espèces, les cals embryogènes perdent leur potentiel embryogenétique s'ils sont maintenus en contact prolongé avec le 2,4-D. Ils sont donc cultivés pendant un mois alternativement sur un milieu de prolifération avec BAP 0,5 mg.l⁻¹ et AIB 0,05 mg.l⁻¹ et 30 g.l⁻¹ de saccharose, puis sur un milieu de maintenance avec BAP I mg.l⁻¹ et AIB 0,5 mg.l⁻¹ et 20 g.l⁻¹ seulement de saccharose. À chaque passage sur le milieu de prolifération, des cals nodulaires porteurs de préembryons sont produits et transférés sur un milieu de maturation des embryons somatiques avec ABA 2,6 mg.l⁻¹ et 50 g.l⁻¹ de saccharose pendant 30 à 45 jours. Les embryons somatiques peuvent être ensuite isolés et transférés sur un milieu de germination sans régulateurs de croissance où ils se développent en plantes. Au total, I 406 embryons somatiques ont été produits, dont la moitié se sont développés en plantules.

Conclusion

Comme chez de nombreuses espèces pérennes à aire de distribution étendue, A. tortilis subsp. raddiana présente une forte variabilité génétique et une faible différenciation entre les peuplements. Le maintien d'une telle diversité génétique est en partie expliqué par la polyploïdie de l'espèce. Toutefois, le rôle évolutif de la polyploïdie comme moyen de lutte contre l'extinction de l'espèce face à des modifications climatiques ou écologiques n'est pas clairement établi.

L'analyse de la diversité génétique des populations naturelles d'A. tortilis présente deux difficultés majeures. L'espèce est tétraploïde pour une bonne part de ses

sous-espèces ou variétés et peu de modèles génétiques sont adaptés à l'interprétation de marqueurs au niveau tétraploïde. L'autre inconvénient est d'ordre plus technique. Les études présentées n'ont pas pu être conduites sur les arbres repérés *in situ* mais sur les graines de leur descendance par fécondation libre, c'est-à-dire sur des populations de demi-frères.

Par ailleurs, l'échantillonnage des deux études connues est insuffisant. Il serait important de compléter l'étude avec des populations d'A. tortilis subsp. raddiana du nord du Sahara, en particulier de Tunisie. Nous avons en effet observé par cytométrie en flux, sur quelques échantillons d'A. tortilis subsp. raddiana de Tunisie, une quantité d'ADN nucléaire deux fois moindre que celle de la même espèce au Sénégal, associée avec des profils isoenzymatiques beaucoup plus simples (résultats non publiés).

La grande diversité génétique intra-population observée sur les marqueurs isoenzymatiques est un indice important pour prédire que les essais en champs de descendances présenteront une forte variance intra. Pour la même raison, toute étude de physiologie sur la plante entière ou d'interaction hôte-symbiote ne pourra présenter de résultat généralisable que moyennant un nombre de répétitions important. C'est pourquoi le clonage réussi de l'espèce ouvre la perspective d'améliorer la fiabilité de telles études.

Auteurs

A. Borgel, C. Cardoso

IRD, GeneTrop, 911, avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France

D. Sané

Université Cheikh Anta Diop, Faculté des sciences et techniques, Département de biologie végétale, BP 5005, Dakar Fann, Sénégal

M.-H. Chevallier

Cirad-Forêt, Campus international de Baillarguet, Montferrier-sur-Lez, TA 10/C, 34398 Montpellier cedex 5, France

Références bibliographiques

BANRC.

1991 – Managing global genetic ressources. Forest trees. Committee on managing global resources: Agricultural imperatives. National Academy Press, 228 p.

BEVER D. J., FELBER F.,

1992 – «The theorical population genetics of autopolyploid ».

In Futuyma D., Antonovics I., eds: Oxford

surveys in evolutionay biology, 8: 185-217.

BORGEL A., DIOUF M., KPARÉ Y..

1993 a — Effet de l'origine génétique sur l'aptitude au clonage in vitro d'Acacia raddiana. Bois et Forêts des Tropiques, 238 : 23.

BORGEL A., BRIZARD J. P., ABERLENC F., HUET C., HAMON S.,

1993 b – « Obtention de cals embryogènes et d'embryons somatiques d'acacias sahéliens : étude histologique comparée avec l'embryogenèse zygotique ». In : XII colloque IAPTC-France, Montpellier (affiche).

BRADSHAW A. D., McNEILLY T.,

1991 – Evolutionary response to global climatic change. *Annals of Botany*, 67 (supplément 1):5-14.

BURLEY J.,

1989 — « Application of biotechnology in forestry and rural development ». In Dhawan V., ed.: Application of biotechnology in forestry and horticulture, New York and London, Plenum Press: 9-20.

CARDOSO C.,

1995 – Contribution à l'étude de la diversité génétique des acacias sahéliens : l'Acacia tortilis subsp. raddiana au Sénégal. Thèse doct., univ. Paris XI, 230 p.

CHEVALLIER M.-H., BORGEL A.,

1998 – « Diversité génétique des Acacias ». In Campa C., Grignon C., Gueye M., Hamon S., éd.: L'Acacia au Sénégal, Paris, Orstom, coll. Colloques et séminaires : 289-308.

FAGG C.W., STEWART J. L.,

1994 – The Value of Acacia and Prosopis in Arid and Semi- Arid Environments. Journal of Arid Environments, 27 (1): 3-25.

GARG L., BHANDARI N. N., RANI V., BOJWANI S. S.,

1996 – Somatic embryogenesis and regeneration of triploid plants in endosperm culture of *Acacia nilotica*. *Plant Cell Reports*, 15:855-858.

GASSAMA Y. K.,

1996 – Étude des voies d'amélioration génétique par la biologie de la reproduction, les potentialités de clonage in vitro et la symbiose fixatrice d'azote atmosphérique chez Acacia albida. Thèse doct. d'État, univ. Cheikh Anta Diop Dakar, 250 p.

GOLDBLATT P.,

1980 — « Polyploidy in angiosperms : monocotyledons ». In Lewis W. H., ed.: Polyploidy: biological relevance, New York, Plenum Press : 219-240.

GOTTLIEB L. D.,

1981 – Electrophoretic evidence and plant populations. *Prog. Phytochem.*, 7:1-46.

HAMRICK J. L., GODT M. J., SHERMAN-BROYLES S. L.,

1992 – Factors influencing levels of genetic diversity in woody plant species. New Forests, 6:95-124.

Нёни М.,

1992 – Multiclonal mixtures and number of clones. *Silvae Genetica*, 41 (4-5): 205-213.

LEVIN D.A.,

1983 – Polyploidy and novelty in flowering plants. Amer. Nat., 122: 1-25.

LEWIS W. H.,

1980 – « Polyploidy in angiosperms : dicotyledons ».

In Lewis W. H., ed. : 241-267.

MULLIN T. J., MORGENSTEIN E. K., PARK Y. S., FOWLER D. P.,

1992 – Genetic parameters from a clonaly replicated test of black spruce (*Picea mariana*) Can. J. For. Res., 22 (1): 24-36.

NANDWANI D.,

1995 – In vitro micropropagation of a tree legume adapted to arid lands Acacia tortilis subsp raddiana.

Ann. Sci. For., 52: 183-189.

NEI M.,

1978 – Estimation of average heterozygosity and genetic distances from a small number of individuals. *Genetic*, 89:583-590.

OBALLA P. O., OLNG'OTIE P. A. S.,

1993 – Chromosome numbers in two African *Acacia* species. *Kew Bull.*, 49:107-113.

OLNG'OTIE P.A.S.,

1991.— Acacia tortilis (Forssk.) Hayne: a study of genetic diversity and breeding systems. Unpublished D. Phil. Thesis, univ. of Oxford, 116 p.

REESE G ..

1958 – Polyploidie und verbreitung. Z. Bot., 46: 339-354.

Ross J. H.,

1979 – A conspectus of the African acacias species. Mem. Bot. Surv. S. Afr., 44: 1-155.

Ross J. H.,

1981 – An analysis of the African *Acacia* species: their distribution, possible origins and relationships. *Bothalia*, 13:389-413.

SANÉ D.,

1998 – Étude des facteurs physiologiques et cytogénétiques de l'embryogenèse somatique chez Acacia nilotica subsp. tomentosa, A. nilotica subsp. adstringens et A. tortilis subsp. raddiana. Thèse doct., univ. Cheikh Anta Diop, Dakar, 126 p.

SANÉ, D., BORGEL A., CHEVALLIER M.-H., GASSAMA-DIA Y. K.,

2001 – Transient auxin treatment for *in vitro* rooting of microcuttings of Acacia tortilis subsp raddiana. Ann. Sci. For., 58: 431-437.

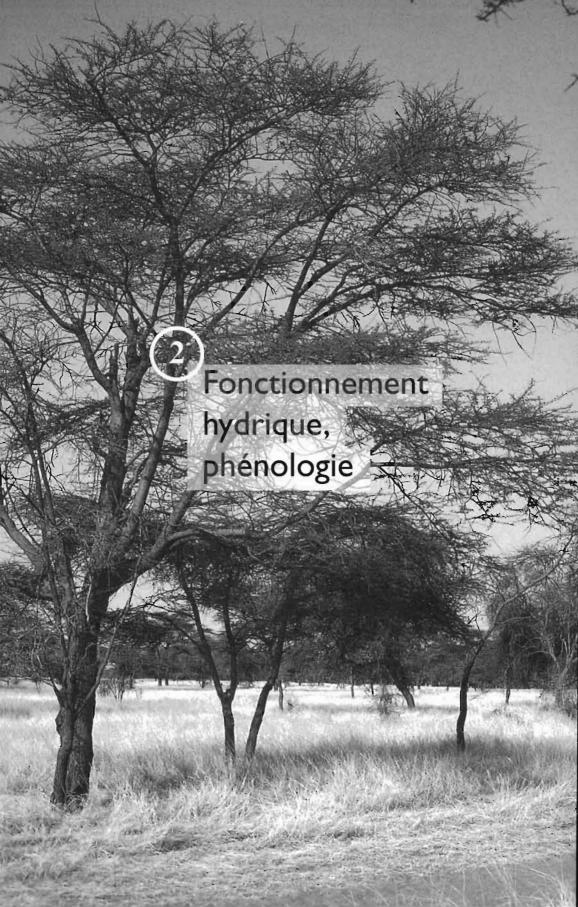
SHARMA P. N., RIETBERGEN S., HEIMO C. R., PATEL J.,

1994 – A strategy for the forest sector in Subsaharan Africa. Banque mondiale Technical Paper, 251, 86 p.

SOLTIS D. E., RIESEBERG L. H.,

1986 – Autopolyploidy in *Tolmia menziesii* (*Saxifragaceae*): genetic insights from enzyme electrophoresis *Amer. J. Bot.*, 73: 310-318.

SOLTIS D. E., SOLTIS P. S.,


1993 – Molecular data and the dynamic nature of polyploidy. *Critical Reviews in Plant Sciences*, 12:243-273.

STEBBINS G. L.,

1985 – « Polyploidy in plants: unsolved problems and prospects ». *In* Lewis W. H., ed.: 495-520.

TAL M.,

1980 – « Physiology of polyploids ». In Lewis W.H., ed.: 61-76.

▼ Formation à Acacia raddiana et savane herbacée. Début de la saison sèche, Ferlo (Sénégal).

© E. Le Floc'н

Écologie et régime hydrique de deux formations à Acacia raddiana au nord et au sud du Sahara (Tunisie, Sénégal)

R. PONTANIER
M. DIOUF
M. S. ZAAFOURI

Résumé

La présence au nord et au sud du Sahara de populations de la même espèce d'Acacia (Acacia tortilis subsp. raddiana), sous des bioclimats et des conditions de contraintes hydriques totalement différentes, nous a conduits à mener des études comparatives sur leur écologie et fonctionnement hydrique respectifs, afin d'approfondir les connaissances sur le comportement face au stress hydrique de ces taxons, dont la diversité génétique, la plasticité et les multiples adaptations écologiques sont remarquables. Nous avons donc essayé de préciser les conditions hydriques auxquelles sont réellement et actuellement soumis les peuplements d'Acacia raddiana de deux stations au nord et au sud du Sahara. La première, située en bioclimat méditerranéen aride inférieur au nord du Sahara, est caractérisée par des disponibilités en eau du sol pendant les saisons froides. Pour la seconde, localisée au sud du Sahara, en bioclimat sahélien, le sol offre à la végétation des ressources en eau pendant une saison chaude à très chaude.

Les résultats obtenus ont permis de montrer que la disponibilité en eau est limitée dans le temps pour les deux stations. Cependant, sa distribution en fonction de la profondeur diffère : dans le Nord, elle est plus élevée en surface qu'en profondeur, contrairement au Sud. Cette stratification des ressources en

eau dans le temps et dans l'espace permet d'interpréter la prédominance des types biologiques et photosynthétiques dans chacune des formations à *Acacia raddiana* étudiées.

Mots-clés:

ÉCOLOGIE, RÉGIME HYDRIQUE, TYPE BIOLOGIQUE, TYPE PHOTOSYNTHÉTIQUE, TUNISIE, SÉNÉGAL, ACACIA RADDIANA.

Abstract

Populations of the species Acacia tortilis subp. raddiana are found in the north and in the south of the Sahara under different bio-climatic conditions and soil water constraints. So, comparative study on the ecology and hydric performance of this species was carried out to characterise the behaviour of this taxon which presents a high genetic diversity and plasticity with numerous striking ecological and hydric adaptations. Furthermore, it is frequently used in the rehabilitation of degraded soils. The study was conducted in two stations under different bio-climatic conditions. The first one is situated in Tunisia, in lower Mediterranean arid bio-climatic conditions. It is characterised by an availability of soil water resource during the cold season. In the station localised in the Sahelian region of Senegal, the soil provides the vegetation with suitable water resources during the hot to very hot season (rainy season).

The results showed that the soil water availability was limited in time in the 2 stations and varied according to the soil depth. In the northern part (Tunisia), it is higher in the top soil and weaker in the lower layer. The situation in the South (Senegal) is the reverse. Consequently, this stratification of water resources in time (dry season and rainy season) and in space (soil depth) explains the prevalence of life forms and photosynthetic groups in each ecosystem studied.

Keywords:

ECOLOGY, WATER REGIME, LIFE FORM, PHOTOSYNTHETIC GROUPS (C3/C4), TUNISIA, SENEGAL,
ACACIA RADDIANA.

Introduction

La présence au nord et au sud du Sahara de populations de la même espèce d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan, sous des bioclimats et des conditions de contraintes hydriques totalement différentes, nous a conduits à mener des études comparatives sur leur écologie et fonctionnement hydrique

sous conditions contrastées. Pour les considérations taxonomiques et biogéographiques de ce taxon à très large répartition en Afrique et dans la péninsule Arabique, et pour les principaux traits de leur écologie générale, nous renvoyons aux articles de Le Floc'h et Grouzis (cet ouvrage) et de DIOUF et GROUZIS (1996). Ces auteurs insistent sur la nécessité d'approfondir les connaissances sur le comportement, face au stress hydrique, de ce taxon dont la diversité génétique, la plasticité et les multiples adaptations écologiques sont remarquables.

Dans cette contribution, nous avons tenté de préciser les conditions hydriques d'existence réellement offertes aux peuplements d'Acacia raddiana de deux stations sous deux bioclimats très différents. L'une de ces stations, située en bioclimat méditerranéen aride inférieur au nord du Sahara, est caractérisée par des disponibilités en eau du sol élevées durant les saisons fraîche et froide. Pour la seconde station, localisée au sud du Sahara, en climat sahélien, le sol offre à la végétation des ressources en eau pendant une saison chaude à très chaude.

Matériel et méthodes

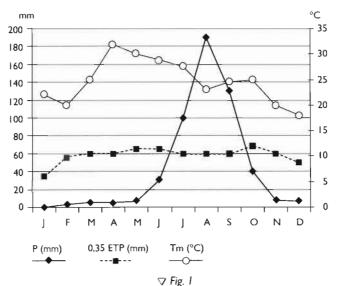
Choix des stations

Grâce à la présence dans toute la région du Ferlo au Sénégal de nombreux peuplements d'Acacia raddiana encore en bon état, malgré la surexploitation qu'ils subissent aujourd'hui, le choix d'une station au sud du Sahara a été aisé. Par contre, en Tunisie, au nord du Sahara, les peuplements de ce taxon ont été décimés au début du xxe siècle. Aussi aujourd'hui seuls subsistent deux peuplements protégés et en bon état, l'un sur le piémont sud du Djebel Bou Hedma, l'autre dans la vallée du Bled Talah au niveau de Haddej.

Au Sénégal, les observations ont été réalisées dans une station mise en défens, située dans le Centre de recherches zootechniques (CRZ) de Dahra (15° 21' N, 15° 26' W) et représentative de la zone sylvo-pastorale du Ferlo, sous climat soudano-sahélien (445 mm de pluviométrie moyenne annuelle : 1933-1994). À moins de 100 m d'altitude, le site de Dahra est localisé à 150 km environ de l'océan.

En Tunisie, le peuplement d'Acacia raddiana étudié à Haddej (9° 38' N, 34° 30' E), fait partie du Parc national du Bou Hedma. Les mesures ont été réalisées dans une mise en défens protégée depuis 1990 par les services forestiers, qui ont réintroduit des antilopes sahariennes (Addax et Oryx) et des autruches à charge réduite. Le climat est de type méditerranéen aride inférieur (100 à 200 mm de pluviométrie annuelle) à hivers froids à doux. À 200 m d'altitude, Haddej est à 85 km de Gabès et de la mer Méditerranée.

 [«] Acacia raddiana, un arbre des zones arides à usages multiples ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003: 21-58.


Principales caractéristiques bioclimatiques régionales

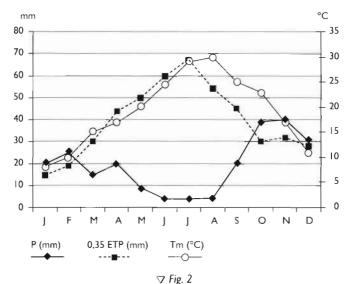
Le tableau I et les figures I et 2 donnent les principaux traits climatiques et bioclimatiques qui prédominent dans la région de chaque station.

√ Tableau I – Caractéristiques climatiques principales des stations de Haddej (Tunisie) et de Dahra (Sénégal).

	P (mm)	T.moy. (°C)	T.min (°C)	T.max (°C)	M (°C)	m (°C)	M-m (°C)	ETP (mm)
Haddej (1934-1985)	220	17,2	8,3	26,2	36,2	3,8	32,4	2 523
Dahra (1933-1994)	445	27,9	21,3	35,5	44,3	8,6	35,7	1 987

P : Pluviométrie annuelle ;T : température ; ETP : évapotranspiration potentielle ; M = moyenne des maxima du mois le plus chaud ; m = moyenne des mínima du mois le plus froid.

Répartition annuelle de la pluviométrie (P mm) et évolution de la température moyenne et de l'évaporation d'un sol nu (0,35 ETP mm) pour la station de Dahra.


Ces données révèlent des différences entre les stations, notamment :

- des précipitations 2 fois plus importantes à Dahra;
- des températures plus élevées mais moins variables à Dahra ;
- l'ETP est plus élevée que les précipitations ; de 11,5 fois à Haddej et de 4,5 fois à Dahra.

À Dahra (fig. 1), la saison des pluies s'étale généralement sur 4 à 5 mois, de juin à octobre, toutefois 85 % des précipitations ont lieu entre juillet et septembre pour un total moyen annuel de 445 mm. Depuis 1971, on assiste à une sécheresse

forte et permanente. Les pluies arrivent en saison chaude d'été et la saison sèche dure de novembre à mai. Cette station appartient bien au climat tropical sec de type soudano-sahélien au sens de LE HOUÉROU (1989). À Dahra, malgré une forte variabilité des hauteurs précipitées, l'occurrence des saisons est relativement stable dans le temps.

À Haddej (fig. 2), plus de 90 % des précipitations ont lieu soit au printemps/automne, soit en automne/hiver. Il s'agit donc bien d'un régime de précipitations du type méditerranéen. La moyenne des précipitations est de 220 mm. La durée de la période sèche (P < 0,35 ETP), plus longue qu'à Dahra, peut ici s'étaler sur 8 à 12 mois. En raison d'une très forte variabilité spatiale, temporelle et quantitative du régime des précipitations, la saison sèche habituellement centrée sur la saison estivale chaude peut durer plus longtemps (> 12 mois). Pour les peuplements d'Acacia raddiana du Sud tunisien, on ne peut donc exclure l'éventualité d'une occurrence simultanée de stress hydrique et thermique.

Répartition annuelle de la pluviométrie (P mm) et évolution de la température moyenne et de l'évaporation d'un sol nu (0,35 ETP mm) pour la station de Haddej.

Au sens d'EMBERGER (1955), ces données situent la station de Haddej dans l'aire isoclimatique méditerranéenne. En outre, avec un quotient pluvio-thermique de 23,2, cette zone se classe dans le bioclimat méditerranéen aride. LE HOUÉROU (1959) subdivise cette zone en deux sous-étages : le sous-étage supérieur à variante fraîche, sur la chaîne de montagne de Beidha-Bou Hedma ; le sous-étage inférieur à variante tempérée, sur les glacis, la plaine et les montagnes relativement peu élevées.

Signalons enfin que les risques de gelées sont importants à Haddej (10 j.an⁻¹), alors qu'ils sont inexistants à Dahra. Les deux stations subissent l'assaut des vents desséchants en provenance du Sahara pendant leur saison sèche respective.

Caractéristiques géomorphologiques et édaphiques

HADDEL

Le Bled Talah est localisé dans une vallée entre deux chaînes de montagnes : au nord, la chaîne d'Orbata-Bouhedma et au sud, celle de Belkhir-Chamsi. Ces deux chaînes relativement peu élevées (point culminant à 814 m) se présentent sous la forme de deux anticlinaux évidés dont les deux flancs sont constitués de crétacé moyen, et une vallée synclinale dont l'essentiel est constitué d'un remplissage quaternaire.

De nombreux oueds, dont les principaux sont Es Seyah, Hallouf et Haddej, entaillent les glacis et drainent la plaine centrale, bassin sédimentaire détritique. Ces éléments sont issus de l'érosion hydrique et de l'érosion éolienne. Si cette dernière est faible en raison des caractéristiques physiques du sol, l'érosion hydrique est cependant très intense du fait du relief, du caractère torrentiel des pluies et du couvert végétal faible et en régression continue.

Au pied des jbels et sur les glacis, les sols sont caillouteux et la couche arable est totalement inexistante. La vallée est constituée d'un sol profond alluvial peu évolué, de texture sableuse à limono-sableuse moyenne à grossière, mais pauvre en matière organique. Ce dépôt détritique du quaternaire est représenté en surface par du sable grossier, du gravier, des cailloux et des quartz. La pellicule de battance est presque généralisée sur la surface du sol, et, en profondeur, les horizons sont peu différenciés et les inclusions de lentilles de graviers sont abondantes.

Les sols du Bled Talah peuvent être regroupés en quatre types :

- les sols d'érosion à croûte ou encroûtement calcaire situés au pied des jbels et sur les glacis ;
- les sols peu évolués d'apport mixte remaniés (éolien et hydrique), de texture sablo-limoneuse, localisés principalement sur les terrasses et les cônes de déjection des oueds;
- les sols peu évolués d'apport alluvial et ayant une texture limoneuse, situés dans les basses plaines de la vallée ;
- les sols peu évolués d'apport alluvial, à texture sableuse à sablo-limoneuse, situés le long des cours d'eau et remaniés par le vent.

\triangle	Tableau	11 –	Que	elques c	arac	téristiqu	ies	physico-chimiques
	des	sols	des	station	s de	Haddej	et	de Dahra.

Site	Z		Gra	ınulomé	trie (%)		M.O.	C/N	CaCO,	pH
	(cm)	0-2 µm	2-20 µm	20-50 µm	50-200 µm	200-2000 µm	(%)		(%)	(eau)
Haddei	0-20	7	5	11	47	27	0,7	11	10	7,8
	20-50	9	8	7	44	30	0,8	12	12	8,1
	50-90	11	8	8	52	19	0,5	10	16	8,2
	90-200	9	7	7	46	28	0,3	1.1	11	8,3
Dahra	0-20	2	6	10	45	37	0,5	12	0	6,9
	20-100	3	8	13	45	29	0,3	8	0	6,8
	100-200	4	9	16	47	26	0,1	7	0	6,9

Le tableau II qui donne les caractéristiques analytiques principales des sols de la réserve de Haddej montre les fortes teneurs en sables (> 70 %), et en calcaire (10 à 16 %). Il n'y a pas de gypse, ce qui est rare dans la région. La matière organique peu abondante (< 1 %) avec des C/N compris entre 10 et 12 se présente sous la forme d'un mull calcique. La densité apparente comprise entre 1,64 et 1,77 indique un certain compactage des sols.

DAHRA

L'évolution géologique et géomorphologique de la zone d'étude a été parachevée pendant le tertiaire et le quaternaire. Le dernier épisode marin du bassin sénégalomauritanien auquel appartient ce site date du lutétien (éocène moyen). Il a été à l'origine de dépôts de marnes et calcaires éocènes qui constituent le support de tous les autres dépôts.

Par ailleurs, le continental terminal couvre la quasi-totalité de la région d'étude. Il présente un faciès sableux avec des intercalations gréso-argileuses (AUDRY, 1962). L'alternance de périodes humides et sèches au quaternaire a entraîné la formation de modelés sableux dunaires de basse altitude (40 m en moyenne) (RAYNAL, 1964). Ces sables dunaires sont organisés en 3 ergs principaux (MICHEL, 1969) :

- l'erg le plus ancien (plus de 40 000 ans d'âge) présente des massifs sableux de plusieurs kilomètres de long et larges de 500 à 800 m;
- l'erg d'âge moyen, de 18 000 à 20 000 ans, correspondant aux dunes rouges ogoliennes, est formé de grands alignements sableux longitudinaux de plusieurs kilomètres de long, de 2 à 3 km de large et de 3 à 6 m de dénivellation. C'est sur cet erg, qui a conservé un relief dunaire marqué, que l'on rencontre les sols brun-rouge modaux sur sables siliceux auxquels se rattache le sol de la station de Dahra:
- l'erg le plus récent, âgé de 5 000 à 7 000 ans, est essentiellement localisé en bordure de la vallée du fleuve Sénégal et du lac de Guiers.

D'autre part, la période lacustre qui a marqué le début du quaternaire explique la présence dans la zone de rares gisements calcaires en forme de lentilles discontinues.

L'étude pédologique du CRZ (AUDRY, 1962; MAIGNIEN, 1965) a montré l'existence de plusieurs types de sols : les sols calcimorphes, peu répandus et disposés en coupoles isolées ; les sols hydromorphes à hydromorphie partielle de profondeur, qu'on retrouve dans les bas-fonds et les mares temporaires ; les sols ferrugineux tropicaux, qui regroupent la majorité des sols du CRZ et renferment toute une gamme de sols sableux à sablo-argileux, plus ou moins lessivés et pauvres en matières organiques (LE HOUÉROU, 1989). Dans leurs particularités, ils ont été classés en trois principales familles : la famille des sols non lessivés sur sables plus ou moins argileux remaniés du continental terminal ; la famille des sols faiblement lessivés en fer sur sables remaniés du continental terminal légèrement plus riches en éléments fins en profondeur (Argiles + Limons ≤ 10 %), et la famille des sols faiblement lessivés en fer sur sables remaniés du Continental Terminal plus riches en éléments fins en profondeur (Argiles + Limons > 10 %). Cette

dernière est la plus répandue. Par rapport aux sols brun-rouge subarides, ils présentent un drainage externe faible à cause du relief globalement émoussé. Cependant, le drainage interne, en relation avec la nature très sableuse du sol, reste important.

La parcelle d'étude se trouve sur un sol appartenant aux sols steppiques brunrouge subarides. Il s'agit de sols très sableux (80 à 85 % de sables contre 3,5 % d'argiles, [LE HOUÉROU, 1989]), profonds, filtrants, à très bon drainage sur sommet de dunes rouges. Ces sols occupent la partie nord à nord-ouest de la concession du CRZ. Ils présentent, surtout au niveau des interdunes, une transition vers les sols ferrugineux tropicaux faiblement lessivés qui les encadrent.

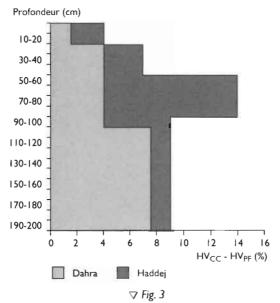
Ces résultats analytiques font apparaître les faits suivants :

- aucune variation texturale considérable le long du profil n'est révélée par l'analyse granulométrique ;
- une bonne minéralisation de la matière organique, indiquée par son taux faible et les rapports C/N (jusqu'à 120 cm de profondeur) (DOCFRAN, 1991);
- une minéralisation poussée après 120 cm, associée à une réserve en matière organique (DOCFRAN, 1991) ;
- une faible rétention qui est caractéristique des sols sableux pauvres en argile faible (DOCFRAN, 1991).

CARACTÉRISTIQUES HYDRODYNAMIQUES COMPARÉES

La figure 3 compare les capacités de stockage des sols des deux stations. En zone aride, cette capacité est une variable très importante ; c'est de celle-ci en effet que dépendent la survie et la reproduction des peuplements arborés et la durée de la période de végétation des espèces herbacées.

Dans cette étude, nous exprimons la capacité de stockage par la réserve utile (RU mm) à la végétation, c'est-à-dire la quantité maximale d'eau disponible pour la végétation que le sol peut conserver après ressuyage des pluies. Elle est calculée après détermination des courbes de rétention d'eau du sol, en utilisant en particulier les valeurs remarquables de la capacité au champ (CC à ψ = - 0,5 MPa) et du point de flétrissement à (ψ = - 1,6 MPa). Elle est donnée par la relation suivante :


RU mm =
$$\int (Hv_{CC} - Hv_{PF}) dz$$

où z est en dm et Hv = humidité volumique en %.

La figure 3, qui présente la distribution de la RU pour les deux premiers mètres du sol des deux stations, montre des différences essentielles, à savoir une capacité de stockage dans le sol de Tunisie double de celui du Sénégal, et une tendance pour le premier à stocker l'eau surtout dans les horizons supérieurs.

Ainsi, bien qu'ils présentent tous les deux de fortes capacités d'infiltration et de drainage en raison de textures sableuses, le sol de Haddej est capable de stocker dans ses deux premiers mètres près de 180 mm d'eau utile à la végétation, soit près de deux fois plus que le sol de Dahra. En outre, on peut supposer que la totalité des précipitations annuelles peut être emmagasinée dans ces deux premiers mètres en année moyenne. Par ailleurs, la présence à Haddej d'un réservoir de

forte capacité à moyenne profondeur (20-90 cm) constitue un atout pour les végétaux à enracinement moyen.

Caractéristiques du stockage de l'eau utile du sol dans les stations de Haddej et de Dahra.

HVCC : Humidité volumique à la capacité au champ ; HVPF : Humidité volumique au point de flétrissement.

À l'inverse, à Dahra, le sol présente un mètre de sables en surface. L'horizon à relative bonne capacité de stockage se situe en profondeur, au-delà de un mètre, ce qui laisse supposer une très bonne et rapide infiltration, et un stockage moyen devant en principe profiter aux espèces à enracinement profond. De toute manière, compte tenu des propriétés hydrophysiques conférant au sol de Dahra un drainage excessif, et vu la concentration des précipitations en deux mois, on peut supposer que dans cette situation une forte partie des eaux météorites retourne dans les nappes.

La végétation

HADDEJ

La végétation spontanée du Bled Talah est actuellement très dégradée. Il s'agit pour l'essentiel d'une végétation steppique à base de chaméphytes, des lambeaux de steppes graminéennes (Stipa sp., Aristida sp., Stipagrostis sp.). Subsistent également les vestiges de formations steppiques arborées très dégradées dominées surtout par des ligneux hauts et occupant les bas fonds, les terrasses des cours d'eau (Ziziphus lotus, Lycium shawii, Calicotome infesta, Retama raetam, Nerium oleander, etc.), les glacis pierreux (Acacia raddiana) et les jbels (Periploca angustifolia, Rhus tripartita, Pinus halepensis, Juniperus phoenicea, etc.). Cette végétation xérique correspond à l'étage

Liste floristique de la végétation de la station de Haddej

Les espèces recensées à Haddej, qu'elles soient ou non citées dans le texte, sont classées par type biologique puis par ordre alphabétique. La nomenclature la plus récente, selon le travail de Le Floc'h et Boulos (en préparation), a été retenue. Pour certains taxons, la synonymie est également indiquée.

* Types biologiques:

Ph. (Phanérophyte), He. (Hémicryptophyte),

NPh (Nano-Phanérophyte), Ge. (Géophyte), Ch. (Chaméphyte), Th. (Thérophyte).

Espèces	Types biologiques
Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan	Ph
Pinus halepensis Mill.	Ph
Atriplex halimus L.	NPh
Calicotome infesta (C. Presl) Guss. subsp. intermedia (C. Presl) Greuter	NPh
Juniperus phoenicea L.	NPh
Lycium shawii Roem. & Schult.	NPh
Nerium oleander L. subsp. oleander	NPh
Periploca angustifolia Labill.	NPh
Retama raetam (Forssk.) Webb subsp. raetam	NPh
Rhus tripartita (Ucria) Grande	NPh
Ziziphus lotus (L.) Lam.	NPh
Argyrolobium uniflorum (Decne.) Jaub. & Spach	Ch
Artemisia campestris L.	Ch
Astragalus armatus subsp. numidicus (Murb.) Emb. & Maire	Ch
Atractylis carduus (Forssk.) C. Chr. var. glabrescens Täckh. & Boulos [A. flava	Desf.] Ch
Atractylis serratuloïdes Sieber ex Cass.	Ch
Deverra tortuosa (Desf.) DC. [Pituranthos tortuosus (Desf.) Benth.]	Ch
Echiochilon fruticosum Desf.	Ch
Euphorbia retusa Forssk.	Ch
Fagonia cretica L.	Ch
Fagonia glutinosa Del.	Ch
Gymnocarpos decander Forssk.	Ch
Haloxylon schmittianum Pomel	Ch
Haloxylon scoparium Pomel	Ch
Helianthemum kahiricum Del.	Ch
Helianthemum lippii (L.) Dum. Cours [H. lippii. (L.) Dum. Cours. var. intricatum	Murb.] Ch
Helianthemum sessiliflorum (Desf.) Pers.	Ch
Hernaria fontanesii J. Gay subsp. fontanesii	Ch
Kickxia aegyptiaca (L.) Nábelek [Linaria aegyptiaca (L.) Dum. Cours.]	Ch
Ononis natrix L.	Ch
Polygonum equisetiforme Sm.	Ch
Rhanterium suaveolens Desf.	Ch

Espèces	es biologique
Salsola vermiculata L.	Ch
Salvia aegyptiaca L.	Ch
Salvia verbenaca L.	Ch
Seriphidium herba-album (Asso) Soják [Artemisia herba-alba Asso]	Ch
Teucrium polium L.	Ch
Thymelaea hirsuta (L.) Endl.	Ch
Thymelaea microphylla Coss. & Durand	Ch
Zygophyllum album L.f.	Ch
Cenchrus ciliaris L.	He
Daucus carota L. subsp. maximus (Desf.) Ball	He
Echium humile Desf. subsp. humile	He
Erodium glaucophyllum (L.) L'Hér.	He
Hedysarum spinosissimum L. subsp. spinosissimum	He
Limonium sinuatum (L.) Mill.	He
Lotus creticus L. [Lotus creticus L. subsp. creticus]	He
Lotus cytisoides L. [Lotus creticus subsp. cytisoides (L.) Arcang.]	He
Lygeum spartum Loefl, ex L.	He
Peganum harmala L.	He
Plantago albicans L.	He
Stipa lagascae Roem. & Schult.	He
Stipa parviflora Desf.	He
Stipa tenacissima L.	He
Stipagrostis ciliata (Desf.) de Winter [Aristida ciliata Desf.]	He
Stipagrostis obtusa (Del.) Nees	He
Stipagrostis plumosa (L.) Munro ex T. Anderson	He
Stipagrostis pungens (Desf.) de Winter	He
Cistanche violacea (Desf.) Beck	Ge
Cynodon dactylon (L.) Pers.	Ge
Scorzonera undulata Vahl [Scorzonera undulata Vahl subsp. alexandrina (Boiss.) Mair	e] Ge
Adonis microcarpa DC.	Th
Ajuga iva (L.) Schreb. subsp. pseudo-iva (DC.) Briq.	Th
Anacyclus cyrtolepidioides Pomel	Th
Anagallis arvensis L.	Th
Asphodelus tenuifolius Cav.	Th
Asteriscus hierochunticus (Michon) Wicklund [Asteriscus pygmaeus (DC) Coss. & Do	ur.] Th
Astragalus asterias Steven [Astragalus cruciatus Link]	Th
Beta vulgaris L. subsp. maritima (L.) Arcang.	Th
Carduncellus eriocephalus Boiss.	Th
Carduus gaetulus Pomel	Th
Carlina corymbosa L. subsp. corymbosa [Carlina involucrata Poir.]	Th
Centaurea furfuracea Coss. & Durieu ex Batt.	Th
Chenopodium murale L.	Th
Cynara cardunculus L.	Th
Daucus syrticus Murb.	Th

Espèces Ty	pes biologique
Diplotaxis harra (Forssk.) Boiss.	Th
Diplotaxis simplex (Viv.) Spreng.	Th
Echinops spinosus L.	Th
Emex spinosa (L.) Campd.	Th
Enarthrocarpus clavatus Godr.	Th
Erodium laciniatum (Cav.) Willd. subsp. pulveruletum (Boiss.) Batt. [E. triangulare (Forssk.) Muschler]	Th
Filago pyramidata L.	Th
Glebionis coronaria (L.) Tzv. [Chrysanthemum coronarium L.]	Th
Heteromera fuscata (Desf.) Pomel [Chrysanthemum fuscatum Desf.]	Th
Hippocrepis areolata Desv. [Hippocrepis bicontorta Loisel.]	Th
Hordeum murinum L.	Th
lfloga spicata (Forssk.) Sch. Bip.	Th
Koelpinia linearis Pall.	Th
Launea angustifolia (Desf.) Kuntze	Th
Launea capitata (Spreng.) Dandy [L glomerata (Cass.) Hook. f.]	Th
Launea nudicaulis (L.) Hook.	Th
Launea resedifolia (L.) Kuntze	Th
Lolium rigidum Gaudin	Th
Malva aegyptia L.	Th
Matthiola longipetala (Vent.) DC.	Th
Medicago laciniata (L.) Mill.	Th
Medicago minima (L.) L.	Th
Medicago truncatula Gaertn.	Th
Neurada procumbens L.	Th
Ononis serrata Forssk.	Th
Onopordon arenarium (Desf.) Pomel	Th
Onopordon espinae Coss. & Bonnet	Th
Paronychia arabica (L.) DC.	Th
Plantago ovata Forssk.	Th
Reseda alba L.	Th
Reseda arabica Boiss.	Th
Rostraria salzmannii Holub [Koeleria pubescens P. Beauv. subsp. salzmanni Trab	-
Rumex bucephalophorus L. subsp. gallicus (Steinh.) Rech. f.	Th —
Rumex vesicarius L.	Th
Schismus barbatus (L.) Thell.	Th
Senecio glaucus L. subsp. coronopifolius (Maire) C. Alexander	Th
Silene colorata Poir. subsp. oliveriana (Otth) Rohrb.	Th
Silene gallica L.	Th
Silene nocturna L.	Th
Silene reticulata Desf.	Th
Silene villosa Forssk.	Th
S. capensis Thunb. [Stipa retorta Cavan.]	Th
Trigonella stellata Forssk.	Th
Volutaria lippii (L.) Cass. ex Maire	Th

de végétation thermo-méditerranéen. Des thérophytes et des hémicryptophytes se développent sur les friches post-culturales au cours des années pluvieuses. Les groupements végétaux sont ceux décrits par LE HOUÉROU (1959; 1969) :

- groupements de dégradation forestiers de la série à Juniperus phoenicea qui sont localisés en altitude sur les jbels ;
- association à Hedysarum carnosum et Peganum harmala située sur les dépressions habituellement très sèches, mais inondables lors des hivers humides où de nombreux oueds déversent eaux et alluvions. Cette association couvrait presque toute la vallée ;
- variante à Artemisia campestris de l'association à Haloxylon schmittianum et Thymelaea microphylla. Elle est localisée sur les sols sableux;
- faciès à Stipa tenacissima de la sous-association à Gymnocarpos decander de la variante à Linaria fallax et Heteromera fuscata de l'association à Seriphidium herba-album et Haloxylon scoparium ; il est situé sur des croûtes et encroûtements calcaires :
- association à Seriphidium herba-album et Haloxylon scoparium, peu représentée et située sur les glacis limoneux calcaires.

La liste des espèces inventoriées au niveau de la station de Haddej est rapportée dans l'encadré 1.

On peut noter que les espèces de la station de Haddej se répartissent dans les types biologiques suivants : thérophytes, chaméphytes, hémicryptophytes, phanérophytes, cryptophytes, et géophytes (tabl. III). Pour la plupart, elles appartiennent au type biochimique C3, seules deux espèces sont du type C4.

√ Tableau III – Proportion (%) deleter (%)	es différents types biologiques
dans les stations de Ho	addej et de Dahra.

Types biologiques	Haddej	Dahra
Thérophytes	49,1	93,5
Phanérophytes	6,3	4,3
Chaméphytes	26,7	0
Hémicryptophytes	11,6	2,2
Cryptophytes	3,6	0
Géophytes	1,8	0

En période automnale des pluies, surtout si la saison est précoce et les températures encore élevées, les graminées pérennes, *Plantago albicans* et de nombreuses espèces annuelles démarrent leur cycle biologique. Au cours de l'hiver, ces plantes persistent à l'état de rosettes et redémarrent leur cycle en février-mars, avec un abondant tapis d'annuelles.

DAHRA

La physionomie générale de la végétation de la zone d'étude se présente à la fin de la saison des pluies comme un tapis herbacé annuel plus ou moins continu, à dominance graminéenne, pouvant atteindre 0,5 à 1 m. Des arbres rares et des

arbustes dispersés et rabougris s'associent aux herbes. C'est la physionomie caractéristique d'une steppe arbustive (LE HOUÉROU, 1989). VALENZA et DIALLO (1972) rattachent la région d'étude au secteur sahélo-saharien, dont la limite méridionale, souvent irrégulière, est constituée d'une part par l'isohyète 400 mm et d'autre part par l'apparition du *Combretum glutinosum*. Ce secteur est très marqué par la présence d'Acacia raddiana.

La station appartient au groupement à *Tephrosia platycarpa* et *Tephrosia purpurea* sur sols dunaires très drainés (brun-rouge) définis par RAYNAL (1964). *Acacia raddiana* est bien représenté dans ce groupement. C'est le même groupement qui a par ailleurs, été décrit par CORNET (1981) comme groupement à *Tephrosia purpurea*.

Il est à noter que, par rapport au reste du couvert végétal de la zone, la végétation du CRZ se singularise par une plus grande stabilité et une plus forte densité des arbres et des arbustes qui se régénèrent assez bien. Cette situation a été favorisée par la protection partielle assurée depuis 1954 contre le surpâturage et l'exploitation.

Le peuplement ligneux y est exclusivement constitué de deux espèces : Acacia raddiana, qui est de loin l'espèce dominante (74,2 %), et Balanites aegyptiaca (25,8 %).

La strate herbacée présente une plus grande richesse spécifique. L'encadré 2 illustre une évolution comparée de la diversité et de l'abondance-dominance des espèces herbacées inventoriées chaque année au maximum de développement de la végétation (septembre), au cours de la période d'étude. Cette évolution montre un accroissement du nombre d'espèces de 32 en 1993 à 42 en 1994. Cette augmentation de la richesse spécifique a été constatée malgré une pluviométrie plus faible en 1994 (303 mm en 1993 et 250 mm en 1994). Elle pourrait aussi être expliquée par la mise en défens assurée par la clôture de la parcelle.

Cependant, le recouvrement a diminué en 1994 avec l'apparition d'auréoles nues. Ces auréoles sont dues, pour une part, à l'encroûtement sous l'effet de la battance de la saison des pluies de 1993, type de phénomène déjà relevé par CORNET (1981) et, pour une autre part, à un tassement par endroits d'herbes sèches de l'année 1993 incomplètement décomposées. Ces deux facteurs combinés ont certainement contribué à réduire le pouvoir germinatif des annuelles. Le faible recouvrement des taxons résulte, en partie, de la baisse de la pluviométrie.

L'encadré 2 permet aussi de constater l'absence totale des herbacées pérennes et une prolifération de *Dactyloctenium aegyptium* et de *Tribulus terrestris*. Ces observations, comparées à celles de CORNET (1981), font apparaître : une régression plus forte des Poaceae et des Leguminosae ; la disparition de *Tephrosia purpurea*, qui dominait autrefois ce groupement ; une forte augmentation du nombre des autres espèces moins intéressantes sur le plan fourrager et de l'amélioration du niveau de fertilité des sols ; la disparition des Combretaceae.

À Dahra, les espèces sont représentées dans leur très grande majorité par des thérophytes (93,5 %) (tabl. III). Ce type biologique est, ici, bien mieux représenté qu'à Haddej et domine très fortement sur les autres types biologiques que

Évolution interannuelle de la végétation de la station de Dahra

T.B. = Type biologique ; Th. = Thérophyte ; He = Hémicryptophyte ;

Ph. = Phanérophyte; S. = Statut;

HC = Hors couvert; SC = Sous couvert; I = Indifférente;

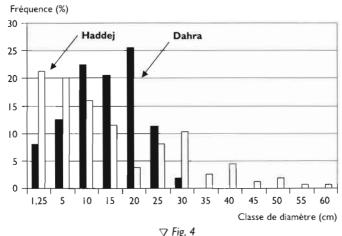
P./A. = Présence/absence; + = présence, - = absence;

A.-D. = Abondance-dominance.

L'échelle d'abondance-dominance est celle proposée par BOUDET (1978).

- = absence;
- + = Espèce présente à l'état d'individus isolés (abondance et recouvrement faible);
- I = Espèce présente à l'état d'individus abondants, recouvrement faible ;
- 2 = Espèce présente à l'état d'individus abondants, recouvrement voisin de 5 %;
- 3 = Espèce dont le recouvrement peut atteindre le tiers (1/3) du relevé (R = 5 à 35 %);
- 4 = Espèce dont le recouvrement occupe entre le tiers (1/3) et les deux tiers (2/3) du relevé (R = 35 à 65 %);
- 5 = Espèce dont le recouvrement occupe plus des deux tiers (2/3) du relevé (R = 65 à 100 %).

Espèce	T.B.	S.	P./ 1993	A. 1994	A. 1993	-D. 1994
Alysicarpus ovalifolius (Schumach.) Léonard	Th.	НС		+		1
Tragus berteronianus Schult.	Th.	НС	+	+	2	2
Dactyloctenium aegyptium (L.) P. Beauv.	Th.	1	+	+	5	4
Portulaca foliosa Ker-Gawl.	Th.	HC	+	+	- 1	1
Brachiaria xantholeuca (Hack, ex Schinz) Stapf.	Th.	НС		+	2	1
Digitaria horizontalis Willd.	Th.	1	+	+	2	2
Cassia obtusifolia L.	Th.	-1	+	+	2	2
Cenchrus biflorus Roxb.	Th.	HC	+	+	2	2
Boerhaavia erecta L.	Th.	HC	+	+	+	+
Choris prieurii Kunth	Th.	HC	+	+	- 1	1
Brachiaria ramosa (L.) Stapf.	Th.	SC	+	+	2	- 1
Cenchrus prieurii (Kunth) Maire	Th.	HC	+	+	+	+
Diplachne fusca P. Beauv.	Th.	HC	+	+	+	+
Zornia glochidiata Reichb. ex DC.	Th.	HC	+	+	2	2
lpomoea pes-tigridis L.	Th.	- 1	+	+	11	1
Momordica balsamina L.	He	SC	+	+	+	+


Espèce	T.B.	S.	P./	A. 1994	A. 1993	-D. 1994
			.,,,		.,,,	
Eragrostis pilosa (L.) P. Beauv.	Th.	SC	+	+	2	2
Commelina forskalaei Vahl	Th.	SC	+	+	+	+
Cleome gynandra L.	Th.	SC	+	+	2	2
Amaranthus viridis L.	Th.	1	+	+	2	2
Cucumis melo L.	Th.	SC	+	+	+	+
Pennisetum glaucum (L.) R. Br.	Th.	SC	+	+	+	+
Schoenefeldia gracilis Kunth	Th.	HC	+	+	2	2
Eragrostis tremula Hochst. ex Stend.	Th.	HC	+	+	2	2
Tribulus terrestris L.	Th.	HC	+	+	3	3
Corchorus tridens L.	Th.	HC	+	+	- 1	+
Choris pilosa Schumach. et Thonn.	Th.	HC	+	+	1	1
Merremia pinnata (Hochst. ex Choisy) Hallier F.	Th.	НС	+	+	1	1
Portulaca oleracea L.	Th.	HC	+	+	1	+
Kohautia confusa (H. et Dalz.) Bren.	Th.	HC	-	+	_	+
Striga hermontheca (Del.) Benth.	Th.	SC	-	+	=	+
Rogeria adenophylla J. Gay	Th.	HC	-	+	-	+
Phyllantus pentandrus Schum. et Thonn.	Th.	НС	-	+	-	1
Ceratotheca sesamoïdes Endl.	Th.	HC	-	+	-	-1
Kyllinga debilis C. B. Cl.	Th.	HC	-	+	-	+
Ipomoea coptica (L.) Roth.	Th.	HC	-	+	-	- 1
Cassia mimosoides L.	Th.	HC	-	+	_	+
Aristida mutabilis Trin. et Rupr.	Th.	НС	-	+	-	2
Mitracarpus scaber Zucc. in Schults. Mant.	Th.	нс	-	+	_	1
Achyranthes argentea Lam.	Th.	SC	+	+	2	2
Ipomoea vagans Bak.	Th.	НС	+	+	- 1	-1
Heliotropium bacciferum Forsk.	Th.	НС	125	+	-	+
Cleome viscosa L.	Th.	НС	+	_	+	_
Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan	Ph.		+	+	4	4
Balanites aegyptiaca (L.) Del.	Ph.	3	+	+	3	3

À l'exception des Poaceae, Convolvulaceae, Commelinaceae, Rubiaceae, Scrophulariaceae, Pedaliaceae, Cyperaceae et Boraginaceae, toutes les espèces ont été nommées selon LEBRUN et STORK (1992 a et 1992 b).

sont les hémicryptophytes (2,2 %) et les phanérophytes (4,3 %). Cette forte proportion des thérophytes, regroupées pour une bonne part dans la famille des Poaceae de type C4 (34,9 %), est caractéristique de la zone sahélienne et traduit une bonne adaptation aux conditions d'aridité (GROUZIS, 1988).

STRUCTURE DES POPULATIONS D'ACACIA RADDIANA

La figure 4 présente la structure des populations d'A. raddiana dans les stations de Haddej et de Dahra. Elle est basée sur une classification du diamètre des troncs mesuré à 20 cm au-dessus du sol.

Structure des populations d'Acacia raddiana dans les stations du Nord (Haddej) et du Sud (Dahra).

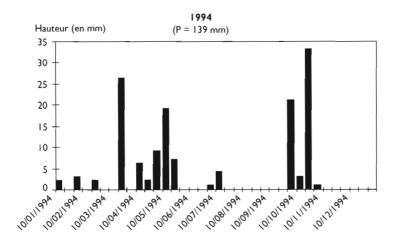
La structure de la population tunisienne est bimodale. Le premier mode se situe dans les classes 1,25-5 cm et le deuxième dans la classe 30 cm. On relève une grande proportion de jeunes individus et quelques rares grands, vestiges d'une population certainement décimée et qui, jadis, était plus importante. D'ailleurs, on peut se demander si cette plus grande fréquence de jeunes individus à Haddej n'est pas due à une régénération naturelle (absence de pâturage du fait de la protection due à la mise en défens depuis sept à huit ans) ou à une réintroduction de l'espèce. L'origine de la forêt d'Acacia raddiana en Tunisie est mal connue. Plusieurs hypothèses ont été émises :

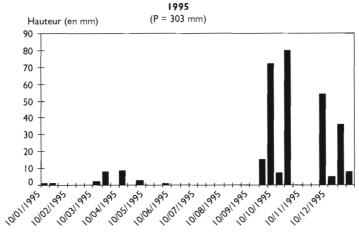
- selon la tradition orale, cette espèce fut introduite au début du xi^e siècle, lors de l'invasion de la Tunisie par les Hilaliens (Haute-Égypte), à partir des excréments des chameaux ;
- certains auteurs, dont LAVAUDEN (1927), considèrent que cette forêt est une relique tropicale ;
- d'autres, comme Bonnet et Barratte in El Amin (1992), soutiennent que Acacia raddiana a été introduit de Ghdamès (Libye) à une date indéterminée.

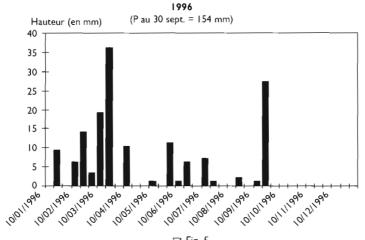
Au niveau du site de Dahra, la population, qui présente une répartition unimodale avec un mode situé entre 10 et 20 cm de diamètre, est aussi caractérisée par une plus grande fréquence d'individus moyens.

Dispositif de suivi des paramètres microclimatiques et de l'eau du sol

Le dispositif de mesure des paramètres microclimatiques installé sur chacun des deux sites est constitué par un système d'acquisition automatique de données composé d'une centrale d'acquisition sur laquelle sont raccordés les différents capteurs. Ces capteurs mesurent les paramètres suivants : la température minimum de l'air, Tamin (°C) ; la température maximum de l'air, Tamax (°C) ; la température du sol à 0,5 m,Ts1 (°C) ; la température du sol à 0,5 m,Ts1 (°C) ; la température du sol à 1,5 m Ts3 (°C) ; l'humidité relative minimale de l'air, HR min (%) ; l'humidité relative maximale de l'air, HR max (%) ; l'humidité relative moyenne de l'air, HR moy (%) ; le rayonnement global, Rg (W.m-²) ; la vitesse du vent,V (m.s-¹) ; les précipitations incidentes, Pi (mm).

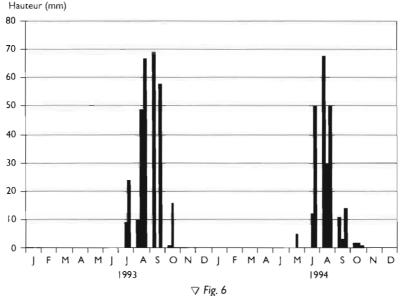

La méthode neutronique a été utilisée pour déterminer l'humidité volumique du sol au cours de la période d'étude au niveau des 2 stations. Pour cela, une sonde à neutrons de type Solo 25 a servi à la réalisation des mesures au niveau de tubes d'accès préalablement installés dans les parcelles. Pendant la période de notre étude, le suivi hydrique a fait l'objet de mesures tous les quinze jours en moyenne en saison humide, et tous les mois en saison sèche.


Résultats


Les conditions climatiques durant les années d'observation

À Haddej (fig. 5), la distribution décadaire confirme que le maximum des précipitations est reçu soit au printemps/automne, soit en automne/hiver. Les précipitations sont de régime méditerranéen, avec une grande variabilité. La période sèche a coïncidé avec la période estivale et a duré en moyenne 8 à 9 mois. Avec 139 mm en 1994 et une répartition relativement bonne, l'année peut être considérée comme moyennement sèche (100 < P < 150 mm), alors qu'en 1995, pour une pluviométrie de 303 mm, on peut parler d'année pluvieuse (P > 250 mm), mais avec une distribution moins homogène (pluies concentrées en septembre-octobre puis décembre). L'année 1996, qui n'a reçu que 154 mm jusqu'en septembre, a été moyennement pluvieuse avec une répartition temporelle plus intéressante.

À Dahra (fig. 6), la saison des pluies dure 3 à 4 mois, 85 % des pluies étant reçues en août et septembre avec une très bonne répartition décadaire correspondant à



∇ Fig. 5
Précipitations décadaires à la station de Haddej (Tunisie).

un niveau de satisfaction des besoins en eau des plantes. Les précipitations arrivent en saison chaude d'été, et la saison sèche dure de novembre à juin, ce qui est caractéristique du climat tropical sec de type soudano-sahélien. Ainsi, avec 303 mm et 250 mm de pluies enregistrées respectivement pour les années 1993 et 1994, cette station a été déficitaire en eau par rapport à la moyenne. À Dahra, malgré une forte variabilité des hauteurs précipitées, l'occurrence des saisons est plus stable dans le temps (mêmes périodes) qu'à Haddej.

Précipitations décadaires à la station de Dahra (Sénégal).

Disponibilité en eau du sol pour la végétation

Rappelons que la station de Dahra est située sur un des systèmes dunaires qui recouvrent l'ensemble de la zone sylvo-pastorale du Ferlo. Cette situation géomorphologique ne lui permet pas de recevoir des apports d'eau supplémentaires par ruissellement en saison des pluies ; au niveau régional, toute l'eau s'infiltre dans ces systèmes d'ergs. Cependant, dans l'espace interdunaire, les conditions hydriques sont moins drastiques que sur la dune. Il n'en est pas de même pour Haddej, situé à l'aval des glacis du Dj Bouhedma à la coalescence des cônes de déjection des oueds, qui lors des orages d'automne ou de printemps apportent une formidable supplémentation en eau aux populations d'Acacia, corrigeant ainsi les faibles apports pluviométriques qui certaines années peuvent être doublés par des apports par ruissellement. Pour connaître les véritables conditions hydriques auxquelles les peuplements d'acacias ont été soumis lors des années d'observation, nous avons d'après les profils hydriques établi un calendrier comparatif mensuel de localisation dans le profil des disponibilités en eau pour la végétation (tabl. IV).

Δ	Tableau IV – Calendrier mensuel et localisation dans le profil des disponibilités en eau
	pour la végétation au cours des années d'observation.

Site	Année	z (cm)	J	F	M	A	M	J	J	A	S	0	N	D
Haddej	1994	0-60	M.			100		1					+	
		60-140		S -			10.1			- Klo		+	+	+
		140-200					1					+	+	+
	1995	0-60			18.37		130	120				+	+	+
		60-140	+			200		11210			943		+	+
		140-200	+	3.0	72		-	-		121			+	+
	1996	0-60	+	+	100					1	150	+		7.
		60-140	+	+	+	33				200	art.	-8	1121	
		140-200	+	+	+			1.5			16		1.0	
Dahra	1993	0-60		0.						+	+			-
		60-140		100				-		+	+	+	118	
		140-200			1	14				+	+	+		P.
	1994	0-60	13	243			2	-	+	+	+	LIVE	1.3	1
		60-140	1.0		245			-		+	+	+	104	
		140-200	1	-2	724	15.				+	+	+		1

^{+ =} eau disponible ; - = eau non disponible.

De ce tableau, qui donne les réserves hydriques disponibles au cours des années d'étude par rapport au point de flétrissement permanent communément admis à ψ = -1,6 MPa pour les plantes cultivées, il ressort que la disponibilité de la réserve est fonction des caractéristiques pluviométriques de chacune des années d'étude.

Ainsi, au nord, dans la station de Haddej, le profil suivant a pu être observé :

- en année moyennement sèche (1994), seuls les horizons profonds (60-140 cm et 140-200 cm) indiquent une réserve disponible sur 3 mois, suite à la percolation des eaux. Quant à la réserve des couches superficielles (0-60 cm), elle a à peine été reconstituée (un mois) par les pluies d'automne;
- en année moyennement pluvieuse à pluvieuse, cette reconstitution est meilleure et dure plus longtemps (2 à 3 mois) sur toute la profondeur de sol prospectée (0-200 cm).

Au sud, dans la station de Dahra, la nature sableuse du sol qui facilite la percolation favorise les réserves de profondeur plus importantes et plus durables.

Synthèse comparative entre le nord et le sud du Sahara

Les résultats obtenus ont permis de montrer que la disponibilité en eau est limitée dans le temps pour les deux stations. Au nord, elle est plus élevée en surface qu'en profondeur; au sud, elle est plus faible en surface qu'en profondeur. Cette stratification des ressources en eau dans le temps et dans l'espace (en profondeur) explique bien, d'une part, la prédominance du groupe fonctionnel des pérennes à enracinement moyen au nord (41 %) par rapport au sud (4,3 %) et, d'autre part, l'importance des thérophytes, des chaméphytes et des hémicryptophytes, types biologiques dont le système racinaire est généralement superficiel. Tous les types biologiques y sont représentés.

Au sud, les thérophytes sont très largement représentés (93,5%); on n'y retrouve que 3 types biologiques pendant la saison de végétation: les thérophytes, les phanérophytes et les hémicryptophytes. En outre, il ressort qu'on rencontre au nord plus d'espèces du groupe photosynthétique C3 que de C4 (2 espèces seulement) et inversement au sud plus de C4 que de C3. Ce résultat est à mettre en relation avec l'adaptation aux conditions particulièrement difficiles du milieu à Dahra; les plantes de type C4 ayant une meilleure efficience photosynthétique aux températures élevées, pour lesquelles la perte de carbone par photorespiration peut devenir importante chez les végétaux de type C3.

Auteurs

R. Pontanier

Laboratoire d'écologie IRD, BP 1386 Dakar, Sénégal **M. Diouf** CERAAS, BP 3320.

Thiès Escale, Sénégal

M. S. Zaafouri

Pôle régional de recherche agricole, IRESA, 9100 Sidi Bouzid. Tunisie

Références bibliographiques

AUDRY P.,

1962 – Étude pédologique du Centre de recherches zootechniques de Dahra-Djoloff. Dakar, Orstom, 131 p.

BOUDET G.,

1978 – Manuel sur les pâturages tropicaux et les cultures fourragères. Paris, IEMVT, ministère de la Coopération, 254 p.

CORNET A.,

1981 – Le bilan hydrique et son rôle dans la production de la strate herbacée de quelques phytocénoses sahéliennes au Sénégal. Thèse Docteur-Ingénieur, univ. Montpellier, 353 p.

DIOUF M., GROUZIS M.,

1996 – Natural distribution of Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan in Senegal: ecological determinism. Intern. Tree Crops Journal, 9: 69-75.

DOCFRAN,

1991 – Mémento de l'agronome. Paris, ministère de la Coopération et du Développement, coll. Techniques rurales en Afrique, 1 635 p.

EL AMIN H.M.,

1992 – Tree and shrubs of Sudan. Exeter, Ithaca Press, 484 p.

EMBERGER L.,

1955 – Une classification biogéographique des climats. Faculté des sciences, Service botanique, Montpellier. Revue des Travaux de Laboratoire de Botanique et de Zoologie, 7 : 3-43.

FLORET C.,

PONTANIER R.,

1982 – L'aridité en Tunisie Présaharienne. Paris, Orstom, coll. Travaux et documents, n° 150, 544 p.

GROUZIS M.,

1988 – Structure, productivité et dynamique des systèmes écologiques sohéliens (Mare d'Oursi, Burkina Faso). Paris, Orstom, 336 p.

LAVAUDEN L.,

1927 – Les forêts du Sahara. Rev. Eaux et Forêts, 65 (6): 265-277.

LE HOUÉROU H. N.,

1959 – Recherches écologiques et floristiques sur la végétation de la Tunisie méridionale. Les milieux naturels et la végétation. Alger, Institut de recherche du Sahara, 281 p.

LE HOUÉROU H. N.,

1969 – La végétation de la Tunisie steppique, avec référence au Maroc, à l'Algèrie et à la Libye. Annales de l'Institut national de recherche agronomique de Tunisie, 42 (5), 622 p.

LE HOUÉROU H. N.,

1989 – The grazing land ecosystems of the African Sahel. Berlin, Paris, Tokyo, New York, Hong Kong, Springer-Verlag, Ecological Studies, n° 75, 282 p.

LE HOUÉROU H. N.,

1995 — Bioclimatologie et biogéographie des steppes arides du nord de l'Afrique. Diversité biologique, développement durable et désertification.

Montpellier, Paris, CIHEAM/ACCT, Options méditerranéennes, série B, Études et Recherches, n° 10, 396 p.

LEBRUN J.-P.,

STORK A. L.,

1992 a – Énumération des plantes à fleurs d'Afrique tropicale. Genève, Conservatoire et Jardin botaniques, 1, 249 p.

LEBRUN J.-P.,

STORK A. L.,

1992 b- Énumération des plantes à fleurs d'Afrique tropicale. Genève, Conservatoire et Jardin botaniques, 2, 257 p.

MAIGNIEN R.,

1965 – Carte pédologique du Sénégal au 1/1 000 000 + notice explicative. Dakar, Orstom.

MICHEL P.,

1969 – Les bassins des fleuves Sénégal et Gambie. Étude géomorphologique. Thèse doct., Strasbourg, 1 167 p.

RAYNAL J.,

1964 – Étude botanique des pâturages du Centre de Recherches Zootechniques de Dahra-Djoloff. Rapport Orstom, Dakar, 99 p.

VALENZA J., DIALLO K.,

1972 – Étude des pâturages du Nord-Sénégal. Maisons-Alfort, IEMVT, Études agrostologiques, 34, 311 p.

Phénologie comparée d'*Acacia raddiana* au nord et au sud du Sahara

M. DIOUF M. S. ZAAFOURI

Résumé

Des observations relatives à la phénologie d'Acacia raddiana ont été réalisées dans deux stations du Sénégal et de la Tunisie, afin de caractériser la variabilité d'amplitude et de position dans le temps des phénophases de ce taxon en fonction des conditions édapho-climatiques.

Au Sénégal, malgré l'importance de variations intersites et interannuelles pour un même site, les résultats obtenus ont montré que le cycle phénologique de cette espèce est centré sur la saison des pluies. Il semble être en rapport étroit avec les réserves hydriques du sol, à l'exception de l'installation de la phase de feuillaison qui serait liée à un phénomène d'ajustement osmotique.

En Tunisie, la réalisation des phases, notamment la floraison et la fructification, s'effectue en période sèche d'été. L'espèce semble garder ici un cycle à caractère tropical, qui serait imputable à un rythme endogène à déterminisme thermique. En effet, le bas niveau des réserves hydriques au cours de la période estivale et l'important déséquilibre observé entre le sol et la plante ne plaident pas en faveur de l'influence des réserves hydriques du sol. Un enracinement profond de cette espèce permettant l'accès à la nappe phréatique a toutefois été évoqué. Par ailleurs, une précocité significative des populations nord-sahariennes pour les phases de floraison et de fructification a été mise en évidence.

Mots-clés:

Abstract

Observations on the phenology of Acacia raddiana have been conducted in two stations in Tunisia (North Sahara) and Senegal (South Sahara) in order to characterize this taxon's variability of range and localisation in phenophase period according to edapho-climatic conditions among factors influencing plant phenology.

Despite the importance of the intersite and inter-annual variations for the same site, our results show that the phenological cycle of this Senegalese species focuses on the rainy season. There appears to be some close links with the soil water reserves, except for the coming of the leafing stage which would be related to some osmotic adjustment phenomenon. In Tunisia, the completion of the flowering and fruit-bearing stages in particular, takes place during the dry summer period. The species seems here to keep a tropical type feature which might be attributed to an endogenous thermo-determinism rhythm. Indeed, the low-level of the water reserves during the summer period and the significant imbalance noticed between the soil and the plant do not speak for the influence of water reserves in the soil. The deep roots of the species which help access to underground water have been nevertheless referred to.

Besides, we have highlighted a significant precociousness of north-Sahara populations for the flowering and fruit-bearing stages.

Keywords:

PHENOPHASE, LEAFING, FLOWERING, FRUIT-BEARING PERIOD, RELATIVE MOISTURE, TEMPERATURE, RAINFALL, SOIL WATER RESERVES.

Introduction

Dans les zones semi-arides, la végétation spontanée constitue la base de l'alimentation des troupeaux. Les espèces ligneuses vivaces présentent une phase végétative plus longue que celle des espèces annuelles. Par ailleurs, les espèces ligneuses ont pour l'alimentation animale un intérêt majeur en raison de la quantité (LE HOUÉROU, 1980) et de la qualité fourragère de leur production (BILLE, 1977; LE HOUÉROU, 1980).

Au Sénégal, GROUZIS et al. (1997) ont montré en ce qui concerne les légumineuses que les herbacées pérennes dominent dans les zones méridionales, où les conditions hydriques sont les plus favorables. Dans les zones plus sèches du Nord, ce sont les phanérophytes microphylles qui sont les plus fréquents avec notamment les espèces du genre Acacia.

Pour la zone tropicale sèche surtout, les travaux sur la phénologie de ces espèces ligneuses sont encore peu nombreux (POUPON, 1979, 1980; AKPO, 1993; DIOUF, 1996 pour le Sénégal, TRAORÉ, 1978; NEBOUT et TOUTAIN, 1978; GROUZIS et SICOT, 1980; GROUZIS, 1993 pour le Burkina Faso).

La présente étude comparative menée conjointement en Tunisie (Nord-Sahara) et au Sénégal (Sud-Sahara) concerne Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan, légumineuse ligneuse arborée commune aux deux zones et dont l'intérêt pour les populations n'est plus à démontrer (Le Floc'h et Grouzis, cet ouvrage). Signalons seulement qu'elle fournit des ressources appréciables à l'économie rurale du fait de ses multiples usages : fourrage d'appoint, arbre de couverture, amélioration de la fertilité du sol par fixation biologique de l'azote. Si certaines caractéristiques sont connues, par exemple le fait que Acacia raddiana est une espèce à feuillage partiellement ou complètement caduque au cours de l'année, il faut cependant reconnaître que peu de travaux ont été consacrés à l'étude détaillée du cycle biologique annuel de ce taxon. Les guides et monographies réalisés pour les diverses espèces d'Acacia (MILTON, 1987; ROSS, 1979) ne fournissent que des informations fragmentaires à propos de leur cycle biologique.

AUBRÉVILLE (1950) puis HALEVY et ORSHAN (1973) ont donné des indications sommaires, situant l'apparition des premières feuilles juste avant les premières pluies. HALEVY et ORSHAN (1973) rapportent qu'en Israël (déserts du Sinaï et du Négev), et contrairement au Sahel africain d'où elle serait originaire, le cycle biologique de cette espèce n'est pas en harmonie avec les conditions climatiques. Ils soulignent notamment une perte partielle de 40 à 50 % du feuillage au mois de juillet de chaque année, indépendamment des conditions d'alimentation hydrique. Les mêmes auteurs situent la feuillaison dans la période de fin juillet à novembre, et le début de la fructification fin octobre-début novembre. Ces auteurs suggèrent aussi l'existence d'un rythme endogène de développement qui serait relique des conditions climatiques de l'aire africaine d'origine de ce taxon. Ils pensent que ce rythme est d'ailleurs tempéré par la pluviométrie annuelle et les autres facteurs du site. D'après des études de Nongonierma (1979) dans le Nord-Sénégal, la feuillaison de ce taxon débute en mars et une défeuillaison a lieu au mois de février de chaque année ; alors que la floraison débute en avril et la fructification en novembre.

Le présent travail a pour objectif de caractériser la variabilité d'amplitude et de position dans le temps des diverses étapes du développement (phénophases) de ce taxon en relation avec les conditions environnementales très contrastées du Sénégal et de la Tunisie.

Matériel et méthodes

Cadre de l'étude

Cette étude a été réalisée dans les stations de Souilène (16° 21' N, 15° 26' W) et Dahra (15° 21' N, 15° 26' W) pour le Sénégal, toutes deux situées sous climat

 [«] Acacia raddiana, un arbre des zones arides à usages multiples ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003: 21-58.

tropical sec (LE HOUÉROU, 1989) caractérisé par deux saisons bien distinctes : une saison humide avec des pluies concentrées sur une période de trois à quatre mois, et une saison sèche de huit à neuf mois. La pluviosité annuelle moyenne est respectivement de 280 mm et 445 mm à Souilène et Dahra.

En Tunisie, la station de Haddej (9° 38' N, 34° 30' E) est située dans la portion dite de Réserve Haddej du Parc national du Bou Hedma. Le site de Belkhir est implanté un peu plus au sud et se trouve séparé de Haddej par la barrière montagneuse du Chamsi-Belkhir. Les deux sites sont ici sous climat méditerranéen aride inférieur (100 à 200 mm de pluviométrie annuelle) à hivers froids à doux. Les principales caractéristiques écologiques des sites d'étude ont déjà été indiquées (Pontanier et al., cet ouvrage)².

Méthodes de suivi et d'échantillonnage

Le principe du suivi phénologique est de déterminer, pour un site donné et caractérisé, le déroulement temporel moyen de développement (apparition, épanouissement, déclin) des individus du taxon, par des observations à diverses dates. Ces observations concernent plus spécialement le développement d'organes tels que feuilles, fleurs et fruits.

Dans nos situations, un échantillonnage stratifié a été réalisé à partir de l'établissement de la structure démographique de la population des différentes stations en fonction des classes de diamètre. Cet échantillonnage a été effectué selon la méthode de GROUZIS (1993), en tenant compte des exigences de FRANKIE et al. (1974). Sur la base des structures reconnues de chacune des populations décrites dans Pontanier et al. (cf. note 2), un échantillon composé de vingt (20), de quarante-deux (42) et de trente-deux (32) individus a été choisi respectivement dans les deux stations du Nord, le site de Souilène et celui de Dahra.

Fréquence des observations et caractérisation phénologique

Les observations ont été effectuées en moyenne tous les 15 jours en saison pluvieuse et tous les mois en saison sèche. Pour la caractérisation phénologique, les stades repères retenus sont ceux proposés par GROUZIS et SICOT (1980).

- · Pour la phase feuillaison :
- -VI : gonflement des bourgeons, pas de feuilles développées ;
- -V2 : bourgeons foliaires + feuilles épanouies (plus de 10 % et moins de 50 % des rameaux de l'individu);
- -V3 : feuilles en majorité épanouies ;
- -V4 : feuilles vertes + feuilles sèches ou ayant changé de couleur (plus de 10 % et moins de 50 %) ;

 [«] Écologie et régime hydrique de deux formations à Acacia raddiana au nord et au sud du Sahara (Tunisie, Sénégal) ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003: 79-101.

- -V5 : plus de 50 % des rameaux de l'individu ont des feuilles sèches ; chute des feuilles. Ce stade est difficile à situer parce que selon l'espèce, il peut couvrir plusieurs mois.
- · Pour la phase floraison :
- fl : bourgeons floraux uniquement;
- f2 : bourgeons floraux et fleurs épanouies (plus de 10 % et moins de 50 %) ;
- f3 : plus de 50 % des rameaux portent des fleurs épanouies ;
- f4 : fleurs épanouies + fleurs sèches (plus de 10 % et moins de 50 %) ;
- f5 : fleurs sèches en majorité ; chute des pièces florales.
- · Pour la phase fructification :
- FI: nouaison;
- F2 : phase d'évolution du fruit jusqu'à sa taille normale ;
- F3: maturité du fruit:
- F4 : fruit mûr + début de dissémination (ouverture des gousses, ou chute des fruits);
- F5 : fruit entièrement sec et chute.

Le spectre phénologique est construit par calcul pour chaque date d'observation des fréquences au sein de la population, des individus en phase de feuillaison (V %), de floraison (f %) et de fructification (F %) (GROUZIS et SICOT, 1980). La relation suivante a été utilisée :

$$P(\%) = (n/N) * 100$$

dans laquelle P (%) indique le pourcentage d'individus d'un site présents aux diverses phases de feuillaison (V), de floraison (f) ou de fructification (F), n le nombre d'individus présents à chacune des phases et N l'effectif de la population.

Une phase de développement est considérée comme étant atteinte pour un individu lorsqu'il présente l'un des 3 stades suivants : 2, 3 et 4. Les stades 1 et 5 marquent respectivement l'installation et la fin des phases. C'est sur cette base que le spectre phénologique d'Acacia raddiana pour les différentes stations nord et sud a été établi.

Les observations ont été réalisées pendant les périodes respectives de juin 1993 à juillet 1994 pour les sites tunisiens et de juin 1993 à octobre 1994 pour les stations sénégalaises.

Suivi des paramètres édapho-climatiques

Les paramètres microclimatiques (pluviosité, humidité relative de l'air, vitesse du vent, température de l'air et du sol, rayonnement global) ont été suivis à l'aide de stations météorologiques automatisées.

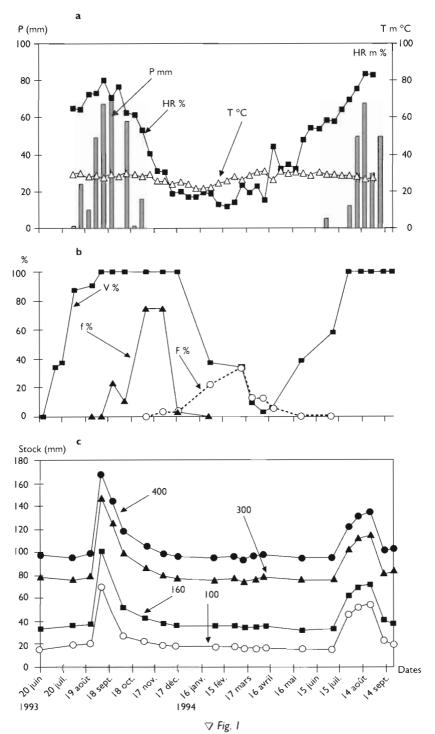
L'humidité volumique du sol a été déterminée périodiquement par la méthode neutronique selon le protocole décrit par Pontanier et al. (cf. note 2)

Résultats

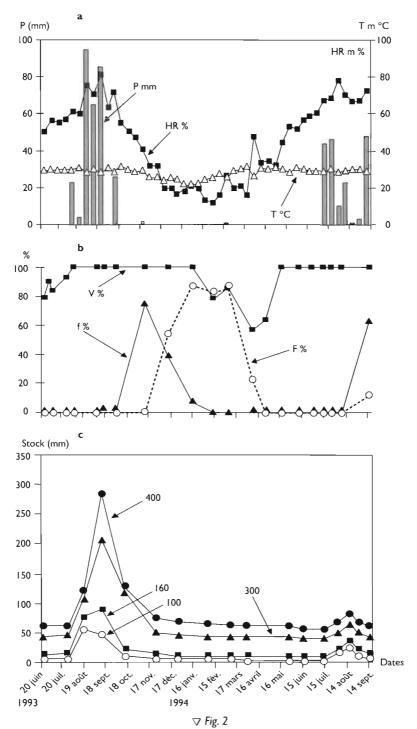
Évolution de la phénologie au sud du Sahara

Les figures I et 2 présentent les spectres phénologiques en relation avec les variations de certains facteurs du milieu (réserve hydrique du sol, température et humidité relative de l'air, pluviométrie).

Au niveau de la station de Dahra, des totaux pluviométriques de 303 mm et 250 mm ont été enregistrés respectivement en 1993 et 1994, avec une répartition unimodale. Il apparaît également que les variations de l'humidité relative décadaire moyenne sont corrélées aux variations saisonnières de la pluviosité (fig. 1a). On peut noter que les humidités relatives maximales (80 % en moyenne) sont obtenues à la mi-septembre alors que les minimales (20 %) sont atteintes entre mi-décembre et mi-mai.


Par ailleurs, les fluctuations de la réserve hydrique du sol (fig. 1c) reflètent bien les variations des précipitations. Ainsi, en 1993, on enregistre une augmentation du stock hydrique du sol à partir du 27 août, ce qui correspond à 38 % (115 mm) de précipitations effectives. Le maximum de la réserve hydrique du sol est atteint vers le 9 septembre et un retour à la réserve minimale de saison sèche est observé dès le 5 novembre. À la mi-août 1994, la réserve maximale a connu son niveau le plus bas de la période d'observation et ce en raison de la pluviosité (250 mm) plus faible que les autres années.

L'observation du spectre phénologique à Dahra (fig. 2b) permet de situer l'installation de la phase de feuillaison entre la 3e décade de juin (22/06) et la 1re décade de juillet (8/07). La feuillaison a atteint son maximum au cours de la 1re décade de septembre (7/09) avec un maintien jusqu'à la mi-décembre et au cours de la 3e décade de juillet (27/07) respectivement en 1993 et en 1994.


On note une période de chute partielle des feuilles à partir de la 1^{re} décade de janvier. Cette défeuillaison se poursuit jusqu'à la 2^e décade d'avril, date à laquelle moins de 5 % des individus de la population portent encore leurs feuilles. En 1994, la mise en place de la nouvelle feuillaison a eu lieu en saison sèche avec un taux de feuillaison de 40 % dès la mi-mai. L'apparition des nouvelles feuilles a donc été plus hâtive en 1994 qu'en 1993, où les premières feuilles ne sont apparues qu'à partir de la 1^{re} décade de juillet.

La floraison qui présente un certain décalage par rapport à la feuillaison a eu lieu, en 1993, à partir de la 2^e décade de septembre et n'avait toujours pas débuté au cours de la 2^e décade de septembre en 1994. Le maximum de 75 % de floraison obtenu à partir de la 1^{re} décade de novembre se maintient jusqu'à la 2^e décade de décembre 1993, date à partir de laquelle elle retombe rapidement à zéro. Cette phase a ainsi duré 114 jours en 1993. On peut également signaler une coulure survenue suite à la phase sèche (déficit pluviométrique) enregistrée pendant la 2^e décade de septembre, et qui s'est traduite par une importante chute de fleurs.

Pour la fructification, il ressort que l'apparition des premiers fruits, qui se situe vers la mi-novembre, coïncide avec le pic de la floraison. Le pic de fructification (mais

Spectre phénologique d'Acacia raddiana à Dahra et variations de certains facteurs du milieu. Moyenne décadaire de l'humidité relative (HR %) et de la température (Tm °C) ; précipitations décadaires (P mm) ; réserve hydrique pour différentes tranches de sol (mm).

Spectre phénologique d'Acacia raddiana à Souilène et variations de certains facteurs du milieu. Moyenne décadaire de l'humidité relative (HR %) et de la température (Tm °C); précipitations décadaires (P mm); réserve hydrique pour différentes tranches de sol (mm).

avec seulement 34 % des individus portant des fruits) se situe vers la 3^e décade de mars 1994. La chute des fruits interviendra à partir de la 2^e décade de mai 1994 et la phase aura duré 174 jours.

Au niveau de la station de Souilène, il a été enregistré 297 mm en 1993 et seulement 175 mm (soit près de moitié moins) en 1994. De plus, au cours de l'année 1994, les pluies ont été concentrées dans la période s'étendant entre la 3^e décade de juillet et septembre (fig. 2a).

L'évolution de la réserve hydrique du sol dans cette station reflète également les variations des précipitations (fig. 2c). En 1993, elle augmente à compter de la 3^e décade de juillet (29/07) pour atteindre son optimum pendant la 2^e décade de septembre (14/09), et retrouver son niveau minimum de saison sèche pratiquement à partir de la 3^e décade de décembre (29/12) et ce jusqu'à la 2^e décade de juillet (12/07) de l'année 1994. La reconstitution de la réserve ne s'est pas faite pendant cette année 1994.

Dans cette station, Acacia raddiana est resté feuillé pendant pratiquement toute l'année (fig. 2b) avec cependant un minimum observé en mai, où 53 % des individus portaient encore des feuilles.

La floraison a débuté pendant la 2^e décade de septembre (18/09) et atteint son maximum (76 %) pendant la 3^e décade de novembre. Cette phase a duré 154 jours.

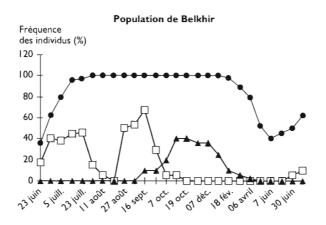
La fructification, qui a été très importante (87 % des individus en fruits) a débuté pendant la 2^e décade de décembre et a duré 153 jours.

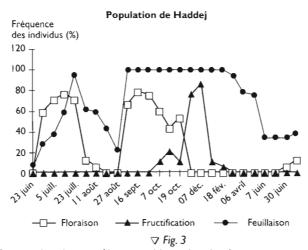
Les spectres phénologiques d'Acacia raddiana, dans les stations de Dahra et de Souilène sont comparés d'après les résultats consignés dans le tableau I.

√ Tableau I – Valeurs caractéristiques des stades phénologiques déduites des courbes de fréquence.

Stade	Floraison		Fructification	
	Dahra	Souilène	Dahra	Souilène
Début	II4/9	18/9	15/11	111/12
Durée	114 j	154 j	174 j	153 j
Importance	(23 % ; 75 %)	(76 %)	(34 %)	(85 %)

Ils révèlent une variabilité intersite relativement importante des comportements de l'espèce. Feuillaison et défeuillaison sont plus précoces à Dahra qu'à Souilène (situé plus au nord), où d'ailleurs plus de la moitié des individus de la population sont restés feuillés, la nouvelle feuillaison démarrant avant la chute complète des feuilles de l'année précédente. À Dahra, le débourrement tardif en 1993 par rapport à 1994 pourrait s'expliquer par la pluviométrie très faible en 1992 (175 mm) par rapport à 1993 (303 mm). Cette déduction selon laquelle la pluviométrie influe sur la durée des phases phénologiques vient corroborer les


propos de WALKER et al. (1995) qui rapportent que la variabilité climatique affecte beaucoup la phénologie de la plante.


La date de démarrage de la floraison est similaire à Dahra et à Souilène. Il en est de même de l'intensité relative de cette phase dont la durée est cependant plus longue à Souilène. Par contre, le niveau de fructification est largement à l'avantage de la station de Souilène (87 % contre seulement 34 % pour Dahra).

Évolution de la phénologie au nord du Sahara

Au niveau du site de Belkhir, pour une année donnée, la feuillaison débute vers la 2^e décade du mois de juin (fig. 3). La chute des feuilles commence dès février de l'année suivante et s'intensifie avec l'apparition des nouvelles feuilles. Plus de 40 % des individus restent feuillés.

Lors de notre cycle d'observation, une première période de floraison a eu lieu avec la feuillaison (2^e décade de juin), mais plus de 90 % des fleurs sont tombées

Spectre phénologique d'Acacia raddiana dans les deux stations tunisiennes.

à la fin du mois de juillet suite à une attaque de chenilles. Une seconde période de floraison a débuté à la fin de la 3^e décade d'août et s'est poursuivie jusqu'à la fin de la 1^{re} décade d'octobre.

La fructification, qui a concerné les fleurs émises au cours de la seconde période de floraison, a démarré à partir du début de la 2^e décade de septembre et la formation des gousses est achevée vers la fin du mois de novembre.

Au niveau du site de Haddej, la phase de feuillaison a, lors de notre cycle d'observation, débuté vers la 3e décade de juin (fig. 3). Une invasion de chenilles a cependant provoqué la disparition de la majorité des feuilles (plus de 80 %) pour la fin de la 3e décade de juillet. Une nouvelle phase de feuillaison a débuté à la Ire décade de septembre et comme à Belkhir la chute des feuilles a démarré vers février. Cette chute s'est intensifiée avec l'apparition des nouvelles feuilles, vers la fin de la 2e décade de mai. Près de 40 % des individus sont restés feuillés.

La première phase de floraison a eu lieu en même temps que la feuillaison (3^e décade de juin) et s'est achevée lors de l'attaque de chenilles qui aura duré deux semaines. Vers la fin de la I^{re} décade de septembre, une nouvelle génération de fleurs apparaissait.

La fructification, à partir de la seconde génération de fleurs, débutée vers la l'e décade d'octobre, s'est poursuivie jusqu'au mois de décembre.

Entre les individus d'une même population, le décalage entre les différentes phénophases peut atteindre une semaine. En revanche, entre les deux populations étudiées, un décalage de 5 à 21 jours entre les différentes phénophases a été observé. La population de Belkhir se caractérise par rapport à celle de Haddej, par une certaine précocité des phénophases feuillaison et fructification.

Discussion

Comparaison entre stations du Nord et entre stations du Sud

La variabilité de comportement notée entre les populations d'Acacia raddiana des stations de Dahra et de Souilène est à mettre globalement en relation, tout au moins pour l'année 1993, avec les différences de réserves hydriques des sols, bien que les précipitations aient été de même ordre d'importance (303 mm et 297 mm). Les conditions de sols étant similaires, cette différence pourrait s'expliquer notamment par des phénomènes de ruissellement constatés dans la station de Souilène. Toutefois, les données illustrées par les figures I et 2 ne permettent pas d'attester d'une influence de cette réserve hydrique sur l'installation de la phase de feuillaison (premières pousses). Cette mise en place, aussi bien à Dahra qu'à Souilène, se manifeste bien avant la reconstitution des réserves hydriques du sol, donc avant l'arrivée des premières pluies. Ce débourrement

serait probablement plus lié à un phénomène d'ajustement osmotique dû à la libération des solutés osmotiquement actifs dans les vaisseaux du xylème, comme le suggèrent les travaux de Fournier (1995), Diouf (1996) et Berger et al., (1996). Ces auteurs ont en effet observé des remontées de la tension de sève de base en pleine saison sèche suite à la défoliation. Par contre, la phase de défoliation s'accorde bien, d'une part, avec le déficit pluviométrique et surtout avec le retour au niveau minimum de saison sèche de la réserve hydrique du sol et, d'autre part, avec les températures élevées qui selon Ullmann (1985) pourraient favoriser la chute des feuilles.

Ces résultats obtenus dans cette partie sud du Sahara corroborent ceux de GROUZIS et SICOT (1980), qui ont révélé un effet prépondérant de la réserve hydrique du sol sur le déterminisme des phases phénologiques de certains ligneux sahéliens. Par ailleurs, BORCHERT (1994) a noté une bonne corrélation entre les phénophases (défoliation, floraison, développement des bourgeons) et la tension de sève qui caractérise l'état hydrique interne des plantes. En fait, comme l'ont souligné REICH et BORCHERT (1984), c'est moins la pluviométrie que son influence sur la teneur en eau du sol qui détermine l'état hydrique de la plante et contrôle sa phénologie. Ces auteurs précisent d'autre part que la réduction des pertes d'eau par transpiration pendant la phase de chute des feuilles favorise l'utilisation de l'eau résiduelle de la plante, permet d'assurer une réhydratation des tissus et, par conséquent, le débourrement observé en période sèche. Ces auteurs concluent que l'état hydrique interne de la plante apparaît comme étant le principal facteur déterminant de son comportement phénologique.

En Tunisie, la précocité révélée pour la population de Belkhir par rapport à celle de Haddej peut s'expliquer par des différences de caractéristiques édaphiques. En effet, le site de Belkhir est un glacis calcaire exposé au sud-est, alors que celui de Haddej est localisé dans une cuvette à sol sablo-limoneux, par conséquent en situation plus fraîche. Toutefois, il faut préciser qu'une des caractéristiques essentielles du cycle de vie d'Acacia raddiana en Tunisie est son indépendance vis-à-vis des précipitations et donc de la dynamique de la réserve hydrique du sol. En fait, le déroulement des différentes phénophases, en particulier la feuillaison et la floraison, se réalise en saison estivale qui, en climat méditerranéen, est sèche. Pendant cette saison, les réserves hydriques sont à leur niveau minimum. Par ailleurs, dans ces stations, un important déséquilibre entre le sol et la plante a été révélé à partir de mesures de la tension de sève de base et du potentiel matriciel du sol ; il est dès lors possible de suggérer un enracinement profond de cette espèce et un accès potentiel à une nappe phréatique.

Comparaison Nord-Sud

Les caractéristiques phénologiques des différentes populations étudiées sont illustrées par la figure 4.

Concernant la phase végétative (feuillaison), il n'apparaît pas de différences fondamentales entre les populations du Nord et du Sud. En effet, la variabilité

→ Fig. 4

Phénologie comparée des populations nord- et sud-sahariennes
d'Acacia raddiana.

intersite déjà signalée par GROUZIS et SICOT (1980) et MILTON (1987) est aussi importante que la variabilité régionale. Dans les deux régions, la phase de pleine feuillaison se situe entre juin et mi-février de l'année suivante.

Les différences régionales sont par contre très marquées pour les phases de reproduction, avec une précocité significative pour les populations tunisiennes :

- floraison entre juin et octobre pour la Tunisie, et entre septembre et février pour le Sénégal ;
- fructification entre septembre et mars pour la Tunisie, et entre novembre et avril pour le Sénégal.

Globalement, la réalisation des phases s'effectue en été (période sèche) en Tunisie. Ainsi que l'avaient déjà évoqué HALEVY et ORSHAN (1973), l'espèce paraît « désaisonnée », ayant semble-t-il gardé un cycle biologique adapté à une situation tropicale. Ce caractère suggère la prédominance d'un rythme endogène sur les paramètres liés aux fluctuations des réserves en eau du sol, sauf éventualité d'un accès des individus à une nappe phréatique plus ou moins profonde. Le déterminisme en serait thermique.

Au Sénégal, le cycle biologique de cette espèce est centré sur la saison des pluies. Si les réserves hydriques du sol ne semblent pas importantes pour le déclenchement de la phase feuillaison, elles sont cependant déterminantes à la fois pour la vitesse d'exécution de la phase (obtention de la pleine feuillaison) et sa durée. Ces différences de comportement traduiraient par ailleurs une certaine hétérogénéité génétique des populations (HALEVY et ORSHAN, 1973).

Conclusion

Les travaux réalisés dans le cadre de cette étude en Tunisie (Nord-Sahara) et au Sénégal (Sud-Sahara) ont permis de préciser et de compléter, en rapport avec les conditions édapho-climatiques des sites respectifs, les indications partielles relatives à la phénologie de cette espèce.

Nos résultats confirment l'importance des variations intersites et interannuelles pour un même site. Par ailleurs, des différences marquées ont été observées entre les populations nord- et sud-sahariennes pour les phases de floraison et de fructification : les populations tunisiennes se caractérisent par une précocité significative. Certaines de ces variations ont été mises en rapport avec les fluctuations de la réserve hydrique du sol qui, en jouant sur l'état hydrique interne de la plante, constitue un facteur déterminant. Un rythme endogène avec un déterminisme thermique a été évoqué pour les populations tunisiennes. On doit cependant noter qu'il est difficile de situer les limites entre l'influence des facteurs exogènes et celle des facteurs génotypiques.

Auteurs

M. Diouf CERAAS, BP 3320, Thiès Escale, Sénégal

M. S. Zaafouri

Pôle régional de recherche agricole, IRESA, 9100 Sidi Bouzid, Tunisie

Références bibliographiques

AKPO L. E.,

1993 – Influence du couvert ligneux sur la structure et le fonctionnement de la strate herbacée en milieu sahélien. Les déterminants écologiques. Paris, Orstom, TDM n° 93, 174 p.

AUBRÉVILLE A.,

1950 – « Les Acacia ». In : Flore forestière soudano-guinéenne, Société d'Éditions Géographiques : 250-288.

BERGER A., GROUZIS M., FOURNIER C.,

1996 – The water status of six woody species coexisting in the Sahel (Ferlo, Senegal). *Journal of Tropical Ecology*, 12:607-627.

BILLE J. C.,

1977 – Étude de la production primaire nette d'un écosystème sahélien. Paris, Orstom, Trav. Doc., n° 65, 82 p.

BORCHERT R.,

1994 – Soil and stem water storage determine phenology and distribution of tropical dry forest trees. *Ecology*, 75 (5): 437-1449.

DIOUF M.,

1996 – Étude du fonctionnement hydrique et des réponses à l'aridité des ligneux sahéliens. Cas de Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan. Thèse doct., UCAD Dakar, 172 p.

FOURNIER Ch.,

1995 – Fonctionnement hydrique de six espèces ligneuses coexistant dans une savane sahélienne (Région du Ferlo, Nord-Sénégal). Orstom, TDM, 165 p.

FRANKIE G.W., BAKER H. G., OPLER P.A.,

1974 – « Tropical plant phenology: application in studies in community ecology ». In Lieth H., ed.: Phenology and seasonality modelling, Berlin, Springer-Verlag: 287-298.

GROUZIS M., SICOT M.,

1980 – « Une méthode d'étude phénologique de populations d'espèces ligneuses sahéliennes : influence de quelques facteurs écologiques ». In Le Houérou H. N., éd. : Les fourrages ligneux en Afrique : état actuel des connaissances, Addis-Abeba, CIPEA : 231-237.

GROUZIS M.,

1993 – « Phénologie de deux espèces ligneuses sahéliennes : aspects méthodologiques et influence des facteurs du milieu ». In Riedacker A., Dreyer E., Pafadman C., Joly H., Bory G., éd.: Physiologie des Arbres et Arbustes en zones arides et semi-arides, Paris, Groupe d'Étude de l'arbre : 145-153.

GROUZIS M., DIÉDHIOU I., ROCHETEAU A.,

1997 – Legumes diversity and root symbioses on an aridity gradient in Senegal. *African Journal of Ecology*, 36: 129-139.

HALEVY G., ORSHAN G.,

1973 – Ecological studies on Acacia species in the Negev and Sinaï. II. Phenology of Acacia raddiana, Acacia tortilis and Acacia gerrardii ssp. negevensis. Israel Journal of Botany, 22: 120-138.

LE HOUÉROU H.-N.,

1980 – « Chemical composition and nutritive value of browse in tropical West Africa ». In Le Houérou H.-N., ed.: Browse in Africa. The current state of knowledge, Addis-Abeba, ILCA: 261-289.

LE HOUÉROU H.-N.,

1989 – The grazing land ecosystems of the African Sahel. Berlin, Springer-Verlag, Ecological Studies, n° 75, 282 p.

MILTON S. J.,

1987 - Phenology of seven Acacia species in South Africa. S. Afr. J. Wildl. Res., 17 (1): 1-6.

NEBOUT J. P., TOUTAIN B.,

1978 – Étude sur les arbres fourragers dans la zone sahélienne (Oudalan voltaïque). Maisons-Alfort, CTFT-IEMVT, 119 p.

NONGONIERMA A.,

1979 – Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale. X. Phénologie en culture et dans la nature, types biologiques, nombres chromosomiques. Bull. IFAN, sér. A, 41 (4): 723-760.

POUPON H.,

1979 – Étude de la phénologie de la strate ligneuse à Fété-Olé (Sénégal septentrional) de 1971 à 1977. Bull. IFAN, sér. A, 41 (1): 44-85.

POUPON H.,

1980 – Structure et dynamique de la strate ligneuse d'une steppe sahélienne du Nord-Sénégal. Paris, Orstom, Travaux et Documents, n° 115, 351 p.

REICH P. B., BORCHERT R.,

1984 – Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J. Ecol., 72:61-74.

Ross J. H.,

1979 – A conspectus of the African acacia species. Mem. Bot. Surv. South Africa, 44: 111-114.

TRAORÉ B.,

1978 – Observations sur la phénologie de quelques espèces herbacées et ligneuses sahéliennes. Rapp. multigr., ACC-LAT (Haute-Volta), DGRST/Orstom/ISP, Ouagadougou, 74 p.

ULLMANN I.,

1985 – Diurnal courses of transpiration and stomatal conductance of Sahelian and Saharian Acacia in the dry season. Flora, 176: 383-409.

WALKER M.D., INGERSOLL R. C., WEBBER P. J.,

1995 – Effects of interannual climate variation on phenology and growth of two alpine forbs. *Ecology*, 76 (4): 1067-1083.

Cycle annuel de transpiration d'Acacia raddiana par la mesure des flux de sève brute (Nord-Sénégal)

F. Do A. Rocheteau

Résumé

Dans la zone nord-sahélienne, la transpiration de 3 individus adultes d'Acacia raddiana est suivie en continu par la mesure des flux de sève brute sur une période annuelle complète. Le cycle de transpiration peut se décomposer en 4 phases principales ayant des relations directes avec la phénologie foliaire, cette dernière permettant d'expliquer 90 % de la variation décadaire des flux normalisés par l'évapotranspiration potentielle (ETP penman) :

- PI, une première phase d'apparition des flux avant la saison des pluies (mai-juin) ;
- P2, une deuxième phase d'augmentation rapide des flux au cœur de la saison des pluies (juillet-août). Les valeurs maximales de densité de flux de sève sont atteintes fin août, elles avoisinent alors 15 l.j-1.dm-2;
- P3, une longue phase de stabilité relative des flux à un niveau « élevé » jusqu'à la fin de la saison sèche « fraîche » (septembre à février). Les variations de la transpiration journalière sont alors essentiellement liées aux seules fluctuations de la demande évaporative (R² = 0,83) ;
- P4, une phase finale de décroissance rapide des flux en saison sèche chaude (mars à mai).

Le cycle décrit est à relier avec une saison des pluies 1996 défavorable (cumul de 150 mm) et une forte contrainte hydrique, le potentiel hydrique foliaire de base se situant dans la majeure partie de la période entre - 1,5 et - 2,1 MPa.

Le cumul des densités de flux de sève donne un ordre de grandeur de la consommation annuelle qui est relativement faible : 3 450 l.an⁻¹.dm⁻², soit 200 mm quand le flux total est rapporté à la surface projetée de la couronne foliaire, ou 66 mm en considérant globalement la surface de xylème conducteur à l'hectare, ce qui représente respectivement 133 % ou 44 % des précipitations cumulées, et 9 % ou 3 % de l'ETP.

Mots-clés :

FLUX DE SÈVE, CYCLE SAISONNIER DE TRANSPIRATION, DEMANDE ÉVAPORATIVE, PHÉNOLOGIE FOLIAIRE, CONSOMMATION ANNUELLE, ZONE NORD-SAHÉLIENNE,

Abstract

In North-Sahara area, the transpiration of 3 adult Acacia raddiana individuals is permanently monitored by measuring the raw sap flow for a full year round. The transpiration cycle may be spilt into four major stages with direct connection with foliar phenology, the latter may account for 90 % of the ten-day variation of the ETP penman flows:

- -PI, a first stage with the appearance of flows prior to the rainy season (May-June);
- P2, a second stage with a rapid flow increase in the middle of the rainy season (July-August). The highest values of the sap flow density are reached at the end of August, they are then around 15 l.d⁻¹.dm⁻²;
- P3, a long phase with relative stability of flows at a α higher α level until the end of the α cool α dry season (September to February). The variations of the daily transpiration are then mainly linked to evaporation demand flows only (α 2 = 0.83);
- P4, a final stage with a fast decrease in the flows during hot dry seasons (March to May).

The cycle described is to be related to an unfavourable 1996 rainy season (a total of 150 mm) and a high hydric demand, the basic leaf water potential being during the main part of the period between -1.5 and -2.1 MPa.

The total of sap flow densities points to a range of annual consumption which is relatively low: 3 450 l.year⁻¹.dm⁻², i.e. 200 mm when the overall flow is reported to the projected surface of the canopy, or 66 mm taking an overall account of the surface of conducting xyleme by hectare, which respectively represents 133 or 44 % of the total rainfalls, and 9 or 3 % of ETP.

Keywords:

Introduction

La gestion durable de la zone sylvo-pastorale sahélienne est à la base des programmes de lutte contre la désertification au sud du Sahara (Desert Margin Initiative, 1996, 1997). Les arbres, sources de la fertilité et de la résilience du milieu, régressent sous les effets combinés de la pression de l'homme et de la péjoration climatique. L'aide à la définition de meilleures modalités de gestion nécessite de faire la part entre ces deux facteurs et de disposer in fine d'une capacité de prévision de l'impact de différents scénarios climatiques sur le fonctionnement et la production des peuplements ligneux.

Acacia tortilis (Forssk.) Hayne subsp. raddiana est une espèce ligneuse dominante dans le paysage nord-sahélien qui constitue un modèle de choix. Elle présente une distribution géographique exceptionnellement large dans les zones arides : du Moyen-Orient à l'Afrique du Sud, en passant par l'Afrique du Nord, l'Afrique sahélienne et l'Afrique de l'Est (WHITE, 1983). Elle combine une grande résistance à l'aridité et un pouvoir fixateur de l'azote atmosphérique avec des intérêts multiples pour l'homme : source de fourrage et d'ombrage en saison sèche, de bois d'œuvre et de combustible de qualité (VON MAYDELL, 1990; FAGG et GREAVES, 1990). L'état des connaissances écophysiologiques sur Acacia raddiana comme sur les autres espèces ligneuses sahéliennes ne permet pas encore de porter un diagnostic précis sur le fonctionnement hydrique des peuplements et sur l'impact des fluctuations pluviométriques. Les progrès dans ce domaine, qui intéressent d'une façon générale l'agroforesterie en zone aride, passent par la réalisation d'un grand nombre d'études quantitatives in situ et à long terme (SANCHEZ, 1995).

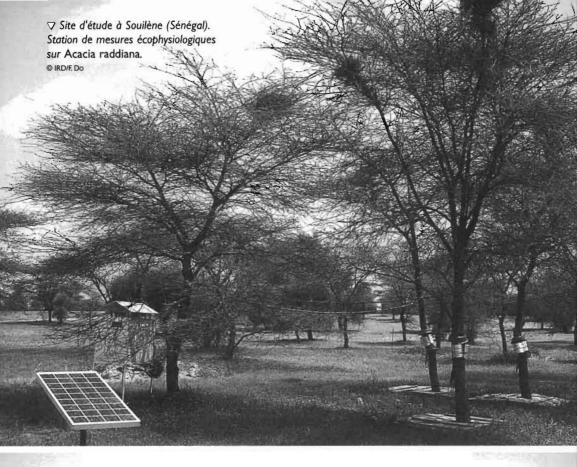
Les rares études sur la transpiration d'Acacia raddiana, conduites à l'aide de poromètres, ont surtout analysé les variations diurnes de la conductance stomatique et sur une durée réduite à quelques journées (STOCKER, 1970; ULLMAN, 1985; FOURNIER, 1995). Les méthodes thermo-électriques de mesure des flux de sève brute ouvrent de nouvelles possibilités d'approche quantitative et en continu de la transpiration des arbres (VALANCOGNE et GRANIER, 1993). Les applications en Afrique sahélienne sont encore rares, toutes espèces confondues, et elles concernent des périodes relativement courtes (BRENNER et al., 1991; Allen et GRIME, 1995; ROUPSARD et al., 1996). Le présent travail vise, pour une saison des pluies donnée, à décrire le cycle annuel complet de transpiration d'Acacia raddiana et à identifier des voies de recherche pour sa prévision.

Matériel et méthodes

Site d'étude

Le site d'étude se localise dans la zone sylvo-pastorale du Nord-Ferlo, dans le nord du Sénégal, à 25 km au sud de Dagana. Le climat de la région est sahélien

sensu stricto avec une moyenne des précipitations annuelles de 282 mm (1918-1990, Dagana) affectée d'un coefficient de variation élevé (37 %, [Akpo, 1993]). La saison des pluies s'étale sur environ 2 à 3 mois entre juillet et septembre. Les températures maximale et minimale de l'air sont respectivement, de 41 °C et 22 °C dans le mois le plus chaud, en mai, et de 31 °C et 14 °C dans le mois le plus frais, en janvier. L'évapotranspiration potentielle est en moyenne de 2 031 mm.an-1 (LE HOUÉROU, 1989).


Le paysage de la zone se caractérise par des formations dunaires de faible amplitude, non orientées, délimitant de petites dépressions fermées. Le peuplement végétal est représenté par une steppe à épineux très ouverte constituée d'une strate herbacée composée de graminées annuelles, parsemée d'arbres et d'arbustes en densité plus élevée dans les dépressions (POUPON, 1980). La strate arborescente est principalement composée d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan, Balanites aegyptiaca (L.) Del. et de Boscia senegalensis (Pers.) Lam. Le site expérimental se situe à proximité du village de Souilène (16° 21' N, 15° 26' W), il s'étend sur 1 ha, du sommet d'une dune au bas de pente, la ligne de plus grande pente du site étant de 1,6 %. La densité des ligneux est de 151 individus.ha⁻¹ et la surface terrière est de 3,87 m².ha⁻¹. On a choisi d'étudier, dans un bosquet, 3 individus d'Acacia raddiana appartenant à la classe modale de circonférence de la distribution des fréquences du peuplement. Les arbres ont en moyenne une hauteur de 7 m, une circonférence au sol de 0,64 m (± 0,05) et une surface projetée de la couronne de 30 m² (± 10,8).

Le sol appartient au groupe des sols « Diéri », sols ferrugineux brun-rouge, faiblement évolués, formés sur matériau sableux pauvre en argile (MAIGNIEN, 1965). Les teneurs moyennes en sable, argile, matière organique, azote et phosphore total (P_2O_5) sont respectivement de 90 %, 6 %, 1,8 ‰, 0,15 ‰, 0,3 ‰ dans le premier mètre de sol. Le sol est profond et relativement homogène jusqu'à la profondeur maximale explorée (4,0 m). La profondeur de la nappe phréatique se situe entre 35 et 40 m d'après le puits fonctionnel à proximité du site.

Mesure des flux de sève

PRINCIPE

La densité de flux de sève brute est mesurée par la méthode à dissipation thermique transitoire de Do et Rocheteau (2002 b). Elle dérive directement de la méthode à dissipation thermique continue de Granier (1985, 1987) avec l'avantage d'être moins sensible aux gradients thermiques naturels, qui étaient importants chez les arbres instrumentés (Do et Rocheteau, 2002 a). Le principe est que la circulation de la sève accroît par convection la dissipation de chaleur d'une sonde insérée radialement dans le xylème. À la différence de la méthode initiale, la sonde est chauffée de façon non continue avec un cycle horaire de 45 minutes de chauffage et 15 minutes de coupure. Le capteur de Granier est en fait constitué de deux sondes en forme d'aiguille contenant des thermocouples Cuivre/Constantan (40 μν/°C) montés en opposition. La deuxième aiguille ou sonde froide a pour objet d'intégrer les variations de la

température du milieu avant chauffage. Elle est placée en amont du flux à environ 10 cm. Le signal brut est ainsi une différence de température.

Le signal dit « alterné » (dTa) est l'écart entre la valeur du signal brut avant et après le temps de refroidissement. Il décroît en fonction du flux de sève. Par rapport au signal brut, le signal alterné n'est plus influencé par le gradient thermique naturel (trouvé entre les deux sondes en absence de chauffage) si ce dernier n'a pas varié durant les 15 minutes de refroidissement. Comme dans la méthode de Granier, une formule d'étalonnage a été établie en laboratoire :

$$Ju = [II,3 Ka / I-Ka]^{0,707}$$

avec Ju, densité de flux de sève en l. dm⁻². h⁻¹ et Ka un index sans dimension défini par le rapport :

$$Ka = (dTa0 - dTau) / dTau$$

avec dTa0, signal alterné à flux nul en μν et dTau, signal alterné en présence de flux. Le flux de sève total traversant l'organe conducteur est alors estimé par la relation :

avec Sa, surface d'aubier ou surface conductrice totale en dm².

Les fluxmètres de Granier ont été pour une part fournis par la société UP (Ruffinistr. 16 80637 Munchen) et pour une autre part fabriqués au laboratoire à Dakar.

SURFACE CONDUCTRICE ET IMPLANTATION DES CAPTEURS

En présence de bois de cœur (xylème non conducteur), la surface conductrice est obtenue par l'expression :

$$SA = \pi (R_{int}^2 - R_{coeur}^2)$$

avec $R_{\rm int}$, rayon intérieur de bois (hors écorce) et $R_{\rm coeur}$, rayon de bois de cœur. Les deux rayons sont obtenus par l'intermédiaire de corrélations avec le diamètre extérieur :

$$R_{int} = 0.49 \ \varphi_{ext} - 0.39 \ (R^2 = 0.997) \ et \ R_{cceur} = 0.48 \ \varphi_{ext} - 5.02 \ (R^2 = 0.931).$$

Ces corrélations « profitent » des abattages malheureusement réguliers dans la zone. Elles reposent sur des relevés réalisés sur 14 individus fraîchement coupés choisis pour leur diamètre extérieur variant de 9 à 36 cm. Sur une coupe, les différents paramètres sont mesurés dans les deux axes les plus représentatifs.

Le niveau d'insertion du fluxmètre dans les troncs est fixé à environ 1,25 m du sol. À cette hauteur, la surface conductrice moyenne est estimée à 1,75 dm². Elle représente un anneau conducteur ayant une largeur de 4,7 cm qui débute après une épaisseur d'écorce de 0,5 cm. Inséré à une profondeur de 2,75 à 3,00 cm, la géométrie du capteur (une aiguille de 2 cm de long et 0,2 cm de diamètre) garantit une interception correcte de la variabilité radiale des flux. Afin de prendre en compte la variabilité azimutale, chaque tronc est équipé de 3 fluxmètres disposés approximativement à 120° selon les orientations nord, sud-est et sud-ouest. Les fluxmètres sont protégés du rayonnement direct par un déflecteur.

La densité moyenne des flux de sève brute dans les troncs (l. dm⁻².h⁻¹) est alors calculée à partir des 9 capteurs en considérant les trois arbres comme des répétitions. En multipliant par la surface conductrice moyenne, on obtient le flux de sève total en l. h⁻¹.

ESTIMATION DE LA TRANSPIRATION

La mesure du flux de sève total dans le tronc permet de suivre la transpiration de l'arbre aux variations près du contenu en eau des parties végétales situées au-dessus du niveau de mesure. D'une journée à l'autre, ces variations peuvent être négligées et le flux de sève total cumulé sur 24 heures est assimilé à la transpiration journalière.

La hauteur d'eau transpirée en mm est calculée à partir du flux cumulé selon deux modalités. La première, ponctuelle, consiste à rapporter le flux à la surface projetée au sol de la couronne foliaire. La deuxième, plus globale, considère l'échelle de l'hectare. Elle applique la densité de flux de sève à la surface de bois conducteur à l'hectare, valeur déduite de la surface terrière à l'aide des relations avec le diamètre extérieur des troncs (Granier et al., 1996). Le calcul est ici approximatif, car il suppose premièrement que les densités de flux de sève et les surfaces conductrices sont équivalentes chez Balanites aegyptiaca. Deuxièmement, il fait l'hypothèse que la densité de flux ne varie pas avec le diamètre des troncs. Mais il a l'intérêt de nous donner un ordre de grandeur à l'échelle du peuplement. Au bilan, le rapport quantitatif entre les deux modes de calcul revient à considérer à l'échelle de l'hectare une surface explorée trois fois supérieure à la surface projetée de la couronne, ou un rayon d'exploration deux fois supérieur au rayon de la couronne foliaire (\cong 3 m).

Mesures climatiques et évapotranspiration potentielle (ETP)

Les données climatiques (températures, humidité relative, rayonnement global, vitesse du vent et précipitations) sont enregistrées localement avec un pas de temps horaire. L'évapotranspiration potentielle est calculée à l'échelle journalière selon la formule de Penman avec les coefficients adaptés à la zone pour l'estimation du rayonnement net de grande longueur d'onde (CHOISNEL et al., 1992). On peut rappeler ici que la formule climatique de Penman donne une valeur d'évapotranspiration pour un couvert homogène et continu, assimilable à un gazon saturé en eau à la surface des feuilles. C'est donc une valeur potentielle qui ne correspond pas à la structure hétérogène et discontinue d'un couvert d'acacias, elle constitue seulement une valeur de référence quant à la demande évaporative.

Mesure de l'humidité du sol et estimation de l'évapotranspiration réelle (ETR)

L'humidité du sol est suivie jusqu'à 4,0 m de profondeur par mesure neutronique (humidimètre SOLO 25, Nardeux SA, Les Ulis, France). Un étalonnage gravimétrique unique est utilisé entre 0,10 et 4,00 m (R² = 0,985, n = 30). La densité

apparente qui varie entre 1,45 et 1,55 sur le profil a été déterminée par mesure gamma (gamma-densimètre CPN 501, Campbell Pacific Nuclear Ltd, Martinez-CA, USA). Le profil hydrique à la capacité au champ a été obtenu par expérience de ressuyage in situ (stock moyen sur 1,0 m : 78 mm). Le pourcentage de réserve hydrique disponible est calculé entre le profil à la capacité au champ et le profil le plus sec mesuré en fin de saison sèche (stock moyen sur 1,0 m : 10 mm). Le dispositif de suivi hydrique considère une zone sous couvert et une zone hors couvert. Les deux zones sont traversées par un transect de trois tubes espacés de 10 m. Le transect de la zone hors couvert commence perpendiculairement à la limite du couvert à 20 m de distance.

L'évapotranspiration réelle (ETR) est estimée par l'intermédiaire d'un bilan hydrique simplifié du sol sur la tranche 0-4 m, négligeant le ruissellement, le drainage et les remontées capillaires :

$$ETR = P - dS_{0.4}$$

avec P, précipitations cumulées entre les deux dates de mesure ; $dS_{0.4}$, variation de stock hydrique (final-initial). Les ETR sous couvert et hors couvert sont obtenues à partir de la moyenne des 3 tubes.

Suivi de la phénologie

Les stades phénologiques de l'ensemble des individus d'Acacia raddiana de la parcelle contrôlée (40) sont décrits selon la méthode visuelle proposée par GROUZIS et SICOT (1980).

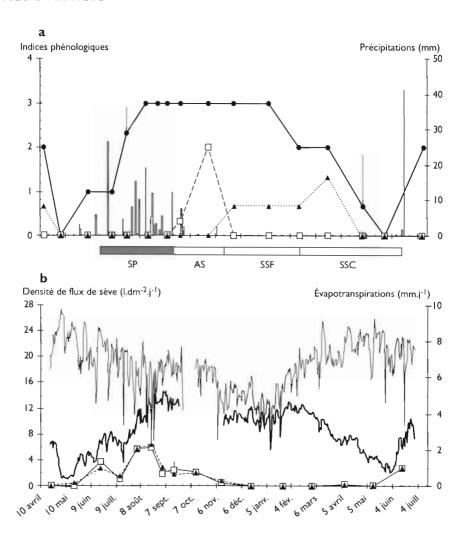
- Pour la feuillaison, ce sont :V0, défeuillaison complète ;V1, bourgeonnement, pas de feuilles développées ;V2, début de feuillaison, bourgeons foliaires et feuilles épanouies sur plus de 10 % et moins de 50 % des rameaux ;V3, pleine feuillaison, feuilles en majorité épanouies ;V4, début de sénescence, feuilles jaunissantes ou sèches sur plus de 10 % et moins de 50 % des rameaux ;V5, sénescence, feuilles sèches et chute des feuilles.
- Pour la floraison, ce sont : f0, pas de fleurs, pas de bourgeons ; f1, bourgeons floraux uniquement ; f2, bourgeons floraux et début d'épanouissement ; f3, plus de 50 % des rameaux portent des fleurs épanouies ; f4, fleurs épanouies et début de sénescence ; f5, fleurs sèches en majorité, chute des pièces florales.
- Pour la fructification, ce sont : F0, pas de fruits ; F1, nouaison ; F2, fruits en croissance ; F3, fruits mûrs ; F4 fruits mûrs et début de dissémination (chute des gousses ou ouverture) ; F5, fruits entièrement secs et chute.

Ces stades sont transformés en indices traduisant la densité croissante de feuilles, de fleurs et de fruits : minimal (0) pour les stades 0 et 5 ; de bourgeonnement (1) pour les stades 1 ; intermédiaire (2), pour les stades 2 et 4 ; maximal (3) pour les stades 3.

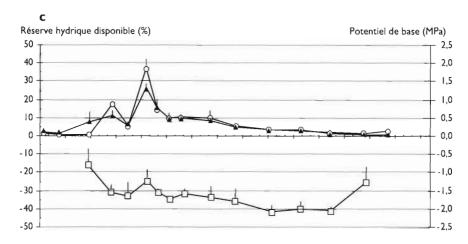
Mesure du potentiel hydrique foliaire de base

La mesure du potentiel hydrique foliaire de base, c'est-à-dire à l'aube, permet une caractérisation de l'état hydrique foliaire de l'arbre.

Les mesures sont réalisées de 6 h à 6 h 45 à l'aide d'une chambre à pression (PMS Instrument Company, Corvallis, Oregon, USA) sur de petits rameaux d'environ 5 cm de long et 0,2 cm de diamètre. Ces derniers, particulièrement épineux, ne sont pas ensachés en attendant la mesure mais celle-ci est effectuée aussitôt après le détachement de chaque rameau. La précision de mesure est estimée à \pm 0,05 MPa. Les rameaux sont prélevés à une hauteur entre 1,50 et 2,00 m autour des couronnes selon les grandes orientations géographiques (nord, est, sud, ouest) et à raison de 4 mesures par arbre. Au final, les valeurs moyennes présentées sont établies sur la base de 12 mesures.


Les suivis de l'humidité du sol, de la phénologie et du potentiel hydrique foliaire font l'objet de missions périodiques effectuées une fois par mois en saison sèche et tous les 15 jours en saison des pluies.

Résultats


Le cycle annuel de transpiration d'A. raddiana, suivi par l'intermédiaire de la dynamique des flux de sève, apparaît rythmé par la phénologie et la saison des pluies, aspects qui seront présentés en premier lieu.

Saison des pluies et cycle phénologique

Les précipitations de l'année 1996 sont particulièrement défavorables, avec un cumul de 150 mm, inférieur de 45 % à la moyenne sur la période 1920-1990, et une répartition irrégulière (fig. la). La saison des pluies débute véritablement le 30 juin avec une pluie de 26 mm. Ce démarrage est suivi d'une période sans pluies significatives qui dure tout le mois de juillet. Les pluies deviennent régulières d'août à septembre, mais avec de faibles intensités (inférieures à 20 mm.j⁻¹). Avant les pluies, le profil hydrique du sol est complètement asséché jusqu'à la dernière profondeur de mesure (4 m) : les humidités avoisinent le potentiel de -1,6 MPa et sont encore inférieures à ce dernier dans les 30 premiers centimètres du sol, soumis également à l'évaporation directe du sol (Do et al., 1998). Avec les faibles pluies de l'année 1996, le front d'humectation n'excède pas la profondeur moyenne de 50 cm et la disponibilité en eau de surface peut être résumée par l'évolution de la réserve disponible entre 0 et 50 cm de profondeur (fig. 1c). Celle-ci est directement liée à l'occurrence des pluies. Elle est équivalente entre la zone sous couvert et hors couvert, atteignant au maximum 30 à 40 %, valeurs obtenues lors des mesures effectuées à la mi-août. La réserve disponible en surface décroît rapidement et s'annule en novembre (fig. Ic). Cette période de relative disponibilité en eau après la saison des pluies caractérise « l'arrièresaison ». La saison des pluies et l'arrière-saison correspondent à la période durant laquelle coexiste avec la strate ligneuse une végétation herbacée.

Par rapport aux saisons, l'indice minimum de feuillaison, qui correspond aux stades de complète sénescence ou de défeuillaison, se situe en mai, à la fin de la saison sèche « chaude » (fig. la). Le bourgeonnement foliaire démarre début juin parallèlement à l'augmentation de l'humidité de l'air, mais avant l'arrivée des pluies proprement dite. L'essentiel du développement foliaire se réalise au cours de la saison des pluies, de juillet à août. En septembre, l'indice maximal de feuillaison est atteint et se maintient durant 5 mois jusqu'au mois de janvier. La sénescence et la chute des feuilles commencent avec la saison sèche chaude. La floraison débute à la fin de la saison des pluies et s'étale d'octobre à novembre, en période de feuillaison maximale. Elle est suivie de la fructification, qui s'étale plus longuement, de décembre à mai, avec un maximum en mars, en pleine sénescence foliaire (fig. la). La phénologie foliaire est la même pour les trois individus étudiés, excepté dans les phases de transition comme le soulignent les écarts types. Le comportement est également homogène avec celui du peuplement étudié sur un hectare, mais il existe des hétérogénéités fortes à l'échelle du paysage.

∇ Fig. 1

Évolutions saisonnières (mai 1996 à mai 1997) de :

(a) précipitations et indices phénologiques de feuillaison (●), de floraison (□) et de fructification (▲), avec la représentation des saisons climatiques :
 (SP) saison des pluies et saison sèche subdivisée en (AS) arrière-saison pluviale, (SSF) saison sèche fraîche et (SSC) saison sèche chaude.
 Pour la série des indices de feuillaison, les barres verticales représentent les écarts types (n = 3).

(b) densité de flux de sève (trait épais), évapotranspiration potentielle selon Penman (trait fin) et évapotranspirations réelles « apparentes » estimées par le bilan hydrique du sol (0-400cm) sous couvert (□) et hors couvert (▲), les barres verticales représentent les écarts types de la série des points sous couvert (n = 3).

(c) réserve hydrique disponible à la surface du sol (0-50 cm) sous couvert (▲)
 et hors couvert (○), et potentiel hydrique foliaire de base (□).
 Pour l'ensemble des séries, les barres verticales représentent les écarts types
 (n = 3 pour les réserves hydriques disponibles, n = 12 pour le potentiel de base).

Flux de sève et évapotranspiration

CYCLE ANNUEL DE TRANSPIRATION

L'évolution de la densité moyenne des flux de sève montre que l'arbre transpire quasiment toute l'année et on peut distinguer 4 phases principales ayant des relations avec la phénologie foliaire et la disponibilité en eau de surface induite par les pluies (fig. 1b).

• PI : une première phase d'apparition des flux avant la saison des pluies (mai-juin) En mai 1996, alors que l'ETP est maximale (9 mm.j⁻¹), les densités de flux sont au plus bas (0,9 l.j⁻¹.dm⁻²) en correspondance avec la défeuillaison. Les flux redémarrent dans la troisième décade de mai avec le débourrement foliaire, ceci avant la première pluie significative. Cette première phase s'appuie nécessairement sur l'utilisation des réserves hydriques de profondeur. En 1997, une phase similaire se reproduit.

 P2 : une phase de croissance rapide des flux au cœur de la saison des pluies (juillet-août)

Alors que l'ETP diminue globalement, les flux augmentent fortement avec l'arrivée des pluies, jusqu'au début du mois de septembre, suivant ainsi le développement foliaire. Les valeurs maximales de densité de flux, atteintes fin août, avoisinent 15 l.j⁻¹.dm⁻², soit un flux d'environ 27 l.j⁻¹. Ces valeurs correspondent à des hauteurs d'eau relativement faibles de : 0,9 mm.j⁻¹ en se rapportant à la surface projetée de la couronne et 0,3 mm.j⁻¹ en considérant globalement la surface conductrice de bois à l'hectare.

• P3 : une longue phase de stabilité relative des flux à un niveau élevé jusqu'à la fin de la saison sèche « fraîche » (septembre à février)

Les enregistrements dans les mois d'octobre et novembre ont été perturbés par des problèmes d'alimentation électrique suite au vol des panneaux solaires (fig. Ib). Mais les dynamiques apparaissent similaires de septembre à mi-février. Durant environ cinq mois, les flux se maintiennent à des valeurs élevées, en correspondance avec la feuillaison maximale. Les valeurs oscillent autour de 12 l.j⁻¹.dm⁻² sous l'influence apparente des fluctuations de l'ETP, de la fin de la saison des pluies au début de la saison sèche chaude.

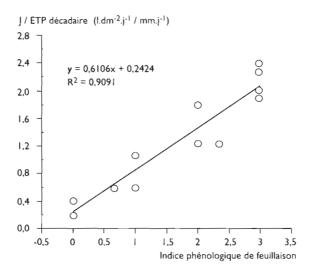
• P4 : une phase finale de décroissance rapide des flux en saison sèche « chaude » (mars à mai).

La transition vers la saison sèche chaude, marquée par l'élévation de l'ETP, voit, en même temps que la sénescence foliaire, une décroissance rapide des flux qui atteignent leurs minima au moment de la nouvelle défeuillaison maximale.

VARIABILITÉ ATTACHÉE À LA MOYENNE DES DENSITÉS DE FLUX DE SÈVE

Les valeurs de densités de flux de sève présentées sont des moyennes à considérer comme des ordres de grandeurs. Car si les évolutions sont très synchrones entre les 9 capteurs implantés dans les troncs des trois arbres, l'hétérogénéité sur les valeurs absolues est particulièrement élevée (± 57 % en moyenne cumulée). Cette hétérogénéité diminue avec l'intensité des flux. La fluctuation provient de la variabilité inter-arbre qui diminue de 70 à 20 % avec l'augmentation du niveaux des flux entre les phases extrêmes PI et P3, tandis que la variabilité intra-arbre, azimutale, reste stable et élevée (50 %).

BILAN HYDRIQUE DU SOL EN SURFACE

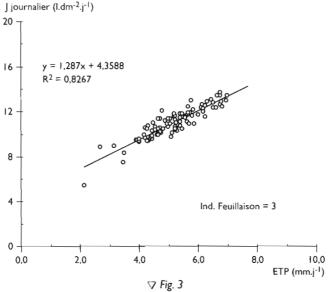

Comme l'on pouvait s'y attendre, compte tenu de la période limitée de disponibilité en eau en surface, le bilan hydrique des horizons de surface du sol (0-400 cm) ne rend pas compte du cycle annuel de transpiration précédemment noté. Les ETR « apparentes » ainsi estimées montrent une activité limitée à la saison des pluies et à l'arrière-saison (fig. 1b). Elles suivent les apports d'eau en surface correspondants aux pluies. Les valeurs maximales, autour de 2 mm.j⁻¹, sont atteintes fin août. Ensuite les valeurs sont nulles de novembre jusqu'aux premières pluies de l'année suivante. D'autre part, les valeurs sont équivalentes sous le couvert des arbres et en dehors du couvert, une distance moyenne de 30 mètres séparant ces deux zones.

Influence de la phénologie foliaire sur la dynamique des flux transpiratoires

Les 4 phases distinguées dans le cycle annuel de transpiration apparaissent directement liées à la phénologie foliaire (fig. 1a, fig. 1b). Il s'agit maintenant de préciser ces liens.

Sur l'ensemble du cycle annuel, la densité des flux est fortement reliée à l'indice de feuillaison en considérant les valeurs moyennes pour la décade correspondant à la notation du stade de feuillaison (R² = 0,84, non présentée). La relation est encore améliorée si la densité de flux est normalisée par l'ETP de la décade (R² = 0,91, fig. 2). Ce résultat affirme le rôle de la phénologie foliaire qui décrit globalement l'évolution de la surface évaporante. In fine, cette relation ouvre une voie vers la prévision de la transpiration saisonnière, si l'on dispose des informations relativement simples comme l'ETP et le stade de feuillaison. Mais il reste à discuter des facteurs d'instabilité de la relation et des éléments à approfondir pour cet objectif.

En revenant sur la figure I b, la comparaison de la dynamique saisonnière des flux à l'évolution de l'ETP montre une opposition apparente, qui s'explique par le fait que l'indice de feuillaison, si déterminant pour les flux, est minimal dans les mois de forte ETP (avril, mai, juin) et maximal dans les mois de plus faible ETP (d'août à janvier). Cette caractéristique a pour conséquence une plus grande efficience du rapport assimilation/transpiration, puisque les échanges gazeux sont maximisés lors des périodes où les pertes en eau seront les plus faibles.



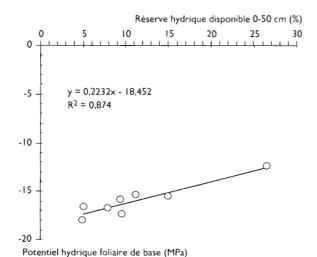
∇ Fig. 2

Densité de flux de sève décadaire (J) normalisée par l'évapotranspiration potentielle en fonction de l'indice phénologique de feuillaison, sur l'ensemble du cycle de mai 1996 à mai 1997.

L'analyse précédente a considéré la détermination du niveau des flux transpiratoires à l'échelle saisonnière. À l'échelle journalière, l'évolution des densités de flux est corrélée positivement avec l'ETP durant environ cinq mois, de la deuxième décade de septembre à la première décade de février (R² = 0,83, n = 101; fig. 3). En cohérence avec la relation de la figure 2, cette période est intégrée dans la phase P3 de stabilité de l'indice de feuillaison à son niveau maximal. Ainsi, toutes choses étant égales par ailleurs, cette relation permettrait durant la phase de pleine feuillaison d'estimer, à partir de la seule ETP, la transpiration journalière avec une incertitude de 11 %.

Ces relations permettent de reconstituer certaines données manquantes des mois d'octobre et novembre afin de disposer d'un ordre de grandeur de la consommation annuelle en cumulant les densités de flux de sève (du 15 juin 1996 au 14 juin 1997) : 3 450 l.an⁻¹.dm⁻², soit 200 mm quand le flux total est rapporté à la surface projetée de la couronne foliaire, ou 66 mm en considérant globalement la surface conductrice de bois à l'hectare. Ces hauteurs d'eau consommée représentent respectivement 133 % ou 44 % des précipitations cumulées et seulement 9 % ou 3 % de l'ETP.

Densité de flux de sève journalière (J) en fonction de l'évapotranspiration potentielle de la deuxième décade de septembre 1996 à la première décade de février 1997.


Potentiel hydrique foliaire de base

Après avoir précisé le cycle saisonnier de transpiration et ses relations, il importe de caractériser le niveau correspondant de contrainte hydrique du végétal par l'intermédiaire du potentiel hydrique foliaire de base (fig. 1c).

Dans l'ensemble, les valeurs du potentiel de base révèlent une forte contrainte hydrique avec une évolution saisonnière marquée. L'évolution de cet indicateur va être replacée dans le contexte des 4 phases du cycle.

Le potentiel de base est maximal dans la période d'annulation des flux en fin de saison sèche chaude : - 0,8 MPa début juin 1996. Lors de la phase P1 de démarrage des flux, il diminue fortement (- 0,7 MPa en 30 jours) pour atteindre -1,5 MPa début juillet. Ensuite, lors de la phase P2 d'accroissement rapide des flux, les valeurs oscillent autour de -1,5 MPa et augmentent ponctuellement en fonction des pluies comme à la mi-août (fig. 1c). Dans la phase P3 de stabilité des flux, parallèlement au dessèchement complet du sol, le potentiel de base décroît pour atteindre une valeur de -2,1 MPa début janvier. Au début de la phase finale P4 de décroissance des flux, malgré l'élévation rapide de l'ETP, le potentiel hydrique de base reste stable à la valeur de -2,1 MPa. En avril, au moment le plus fort de la chute des flux, la tension de base évolue rapidement (+ 0,8 MPa en 30 jours) vers une valeur plus élevée comme l'année précédente.

Au bilan, le potentiel de base tend à diminuer avec l'accroissement des flux ou la feuillaison, et à augmenter avec la diminution des flux ou les pluies. Sur l'ensemble du cycle annuel, il n'y a pas de corrélation entre le potentiel de base et la réserve hydrique disponible en surface. Mais si l'on considère uniquement la période durant laquelle de l'eau est disponible en surface (ou ETR > 0), on trouve une corrélation non négligeable ($R^2 = 0.87$, n = 8, fig. 4). Elle implique que durant cette période (saison des pluies et arrière-saison) les arbres utilisent au moins une partie des réserves hydriques de surface en concurrence avec la strate herbacée. Mais il faut relativiser la force de cette corrélation, car le nuage de points est déséquilibré avec un point isolé dans le domaine des disponibilités plus élevées (fig. 4).

∀ Fig. 4

Potentiel hydrique foliaire de base en fonction de la réserve hydrique disponible entre 0 et 50 cm de profondeur du sol, de juillet à novembre 1996 (saison des pluies et arrière-saison).

Durant ce cycle, la croissance du végétal est apparue très limitée. Les pousses de l'année, généralement observées sur les rameaux en fin de saison des pluies, se sont avérées rares et de taille réduite. La fonction d'exploration des rameaux n'a pu s'exprimer, seules les fonctions d'exploitation et de reproduction ont pu l'être. Au bilan, le cycle de transpiration débuté par la saison des pluies de l'année 1996 est marqué par une forte contrainte hydrique.

Discussion

Les résultats obtenus amènent de nombreux éléments de discussion qui tiennent principalement aux grands traits du cycle de transpiration et aux relations mises en évidence avec la phénologie foliaire.

Cycle annuel de transpiration

DÉMARRAGE AVANT LA SAISON DES PLUIES

Le débourrement foliaire qui précède l'arrivée de la saison des pluies est un phénomène connu chez les ligneux en zone sahélienne et souvent appelé « précession foliaire » (LE HOUÉROU, 1989). Au-delà des observations de feuillage, STOCKER (1970) et ULLMAN (1985) avaient mesuré via la conductance stomatique que la transpiration pouvait démarrer avant les premières pluies malgré les conditions extrêmes de température et de demande évaporative.

EXTENSION DU CYCLE

Une caractéristique majeure et novatrice du cycle décrit est que l'arbre transpire toute l'année malgré une saison des pluies défavorable et neuf mois de saison sèche.

En Afrique sahélienne, il n'existe pas à notre connaissance de résultats directement comparables en termes de continuité et de durée, ceci toutes espèces ligneuses confondues. Les seules études à long terme du fonctionnement saisonnier des ligneux sahéliens reposaient jusqu'à présent sur une estimation indirecte des évapotranspirations via le bilan hydrique du sol en surface. La variation saisonnière de l'évapotranspiration d'un bosquet à *Acacia raddiana* décrite par NIZINSKI et al. (1994) d'après trois années de suivis est similaire à celle que nous avons obtenue à partir du bilan hydrique sur la tranche 0-400 cm. Mais cette méthode, ne prenant pas en compte le pompage en profondeur, conduit à localiser l'essentiel du fonctionnement hydrique dans les périodes de saison des pluies et d'arrière-saison (juillet à novembre). Le fonctionnement sur les réserves hydriques profondes était alors considéré comme un phénomène de survie, négligeable quantitativement, alors que les mesures de flux de sève montrent que la quantité d'eau transpirée de décembre à juin (saison sèche fraîche et chaude) est quantitativement aussi

élevée que durant la période précédente. Il faut souligner ici que le fonctionnement en saison des pluies apparaît qualitativement très important, car il correspond à l'essentiel de la mise en place du feuillage, de la «pompe» qui va fonctionner le reste du cycle.

FONCTIONNEMENT SUR LES RÉSERVES HYDRIQUES PROFONDES

Sur le cycle annuel, les résultats montrent qu'au moins durant plus de 6 mois les arbres s'alimentent uniquement sur les réserves hydriques profondes. D'après le puits villageois à proximité du site, la nappe phréatique se situe entre 35 et 40 mètres de profondeur. Les profils hydriques réalisés par les hydro-géologues dans le Ferlo précisent le niveau de la nappe à environ 37 m avec un front capillaire atteignant 33 m (GAYE et EDMUNDS, 1996). Des accroissements de l'humidité du sol, liés au matériau, sont notables avant la nappe, entre 15 et 25 m, mais la disponibilité réelle n'est pas connue. De toute façon, une exploration racinaire de ces profondeurs jusqu'au toit de la nappe est réaliste. LHÔTE (1961) et BENSAÏD et al. (1996) rappellent que des racines d'Acacia raddiana ont été trouvées jusqu'à 30 m de profondeur. Un ordre de grandeur similaire (26 m) est donné pour la longueur maximale des racines traçantes d'acacias dans les horizons de surface du sol (Soumaré et al., 1994). Il faut rappeler ici que la saison des pluies 1996, avec un cumul de 150 mm et de faibles intensités, a induit des conditions de disponibilité en eau de surface très défavorables, le front d'humectation ne dépassant pas 50 cm de profondeur. Par exemple, en 1995, la saison des pluies était beaucoup plus favorable avec un cumul de 250 mm et un front d'humectation atteignant 110 cm de profondeur. De telles variations, courantes en zone sahélienne, peuvent vraisemblablement modifier certaines modalités de fonctionnement des arbres. la contribution relative des horizons de profondeur à leur alimentation hydrique en particulier.

CONTRAINTE ET POTENTIEL HYDRIQUES DE BASE

Nos résultats sont en accord avec les variations saisonnières notées par BERGER et al. (1996) d'après deux années de suivi dans la même zone. Par contre, les valeurs absolues mesurées par ces auteurs sont légèrement supérieures en saison sèche chaude (minimum de -1,7 MPa) et en saison des pluies (maximum de -0,8 MPa). De nombreux facteurs biologiques peuvent expliquer une fluctuation des valeurs absolues de potentiel de base de quelques MPa, certains éléments seront évoqués dans la suite de la discussion. D'autre part, la saison humide est le siège de fluctuations rapides du potentiel de base liées à l'occurrence des pluies. Et un décalage de quelques jours de la date de mesure peut certainement influencer les résultats de quelques dixièmes de MPa. Cette limite liée au protocole de mesure est aussi valable pour la période de défeuillaison durant laquelle se produit une remontée rapide du potentiel de base.

Pour expliquer le phénomène de remontée du potentiel de base en fin de saison sèche, BERGER et al. (1996) avancent l'hypothèse d'une augmentation de la pression osmotique liée à une accumulation de solutés précédant le bourgeonnement foliaire. Une autre hypothèse qui n'exclue pas la précédente réside dans le fait

que, compte tenu des conditions de forte contrainte hydrique, le potentiel de base n'est pas en équilibre avec les potentiels hydriques de sol. La défeuillaison en réduisant la transpiration accroît les possibilités de réhumectation et de rééquilibrage nocturne (AMÉGLIO et ARCHER, 1996). Des manipulations complémentaires de réduction artificielle de la transpiration devraient permettre de tester cette hypothèse.

NIVEAU DES TRANSPIRATIONS « MAXIMALES »

Dans de telles conditions de contrainte, il est remarquable de noter que la transpiration est maintenue à un certain niveau durant 5 mois (phase P3). Mais ce niveau est en fait relativement faible et il est révélateur de l'intensité de la contrainte hydrique. Dans la région de Niamey, BRENNER et al. (1991) trouvent sur une haie brise-vent de jeunes neems (Azadirachta indica A. Juss.) des densités de flux de 30 à 50 l.j-1.dm-2, donc deux à trois fois supérieures à nos valeurs. Ces auteurs ne précisent pas les conditions de disponibilité en eau du sol, mais ces valeurs sont équivalentes à celles mesurées par CABIBEL et Do (1991) sur des pommiers irrigués en période estivale sous climat méditerranéen. Dans la même région de Niamey, ALLEN et GRIME (1995) ont mesuré sur Guiera senegalensis J. F. Gmel. des densités maximales de 15 l.dm⁻².j⁻¹, soit des valeurs équivalentes aux nôtres. Sur une espèce beaucoup plus proche, Faidherbia albida (Del.) A. Chev., ROUPSARD et al. (1998) trouvent aussi des densités maximales du même ordre (16 l.dm⁻².j⁻¹) correspondant à des hauteurs d'eau : de 1,7 mm si rapportées à la surface projetée de la couronne, de 0,2 mm si extrapolées à l'échelle du peuplement. En climat tempéré, des densités de flux entre 5 et 10 l.dm⁻².j⁻¹ sont retrouvées en situations de forte contrainte hydrique (LOUSTAU et al., 1990). Finalement, le plus remarquable dans les résultats sur Acacia raddiana, c'est la faiblesse de la transpiration maximale quand elle est rapportée à la surface projetée de la couronne (0,9 mm.j⁻¹). Cette observation laisse supposer une surface foliaire particulièrement réduite par rapport à la surface projetée de la couronne au sol et par rapport à la surface d'aubier.

L'intensité de la contrainte hydrique, le caractère très ouvert du peuplement et la feuillaison hétérogène au sein d'un même houppier sont vraisemblablement à l'origine de la forte variabilité des densités de flux de sève mesurées chez Acacia raddiana (CV = 57 %). Cette variabilité est d'ailleurs supérieure aux données jusqu'alors répertoriées dans la bibliographie (GRANIER et al., 1996). L'incertitude qui en résulte sur la valeur moyenne ne modifie pas les conclusions qui viennent d'être tirées.

Phénologie foliaire et prévision des transpirations

Les relations mises en évidence avec la phénologie foliaire ouvrent des perspectives pour une prévision du cycle de transpiration ; il s'agit maintenant de les discuter afin de dégager les éléments à approfondir pour atteindre cet objectif. En résumé, la connaissance de la phénologie foliaire et de l'évapotranspiration potentielle

permet d'expliquer 90 % de la variation décadaire des flux transpiratoires sur l'ensemble du cycle annuel et 80 % de la variation journalière durant les cinq mois de la phase 3 de pleine feuillaison.

Transpiration fortement couplée avec l'atmosphère

La première conséquence de ces relations est que la transpiration des arbres est très fortement couplée avec l'atmosphère au sens défini par JARVIS et MAC NAUGHTON (1986). Cela n'est pas une surprise mais plutôt une confirmation, compte tenu de la rugosité du couvert et des caractéristiques climatiques. Cela signifie qu'au voisinage des feuilles, les conditions atmosphériques sont similaires à celles rencontrées à l'extérieur du couvert. Ces conditions de conductance aérodynamique élevée permettent de simplifier l'équation de la transpiration foliaire de Penman-Monteith (MONTEITH, 1965). La transpiration de l'arbre J_w peut être alors décrite par la forme suivante (BRENNER et al., 1991):

$$J_w = (\rho_a c_p/\gamma) g_s D_a A_1$$

où A_1 est la surface foliaire totale (m²), g_s la conductance stomatique moyenne (m.s⁻¹), D_a le déficit de pression de vapeur de l'air (Pa), c_p la capacité calorifique de l'air (J.kg⁻¹.°C⁻¹), ρ_a la masse volumique de l'air (kg.m⁻³) et γ la constante psychrométrique (Pa.°C⁻¹).

L'équation permet de comprendre que la transpiration du couvert est essentiellement déterminée par le déficit de saturation de l'air, terme intégré dans l'ETP, et par la conductance du couvert qui représente le produit de la conductance stomatique et de la surface foliaire.

TRANSPIRATION SAISONNIÈRE

Une deuxième conséquence de ces résultats est alors que les variations de conductance stomatique ont un rôle négligeable par rapport à la surface foliaire dans la détermination quantitative de la transpiration saisonnière. Ce constat est retrouvé dans la bibliographie où la transpiration journalière ou saisonnière, normalisée par l'ETP ou le déficit de saturation de l'air, est mise en relation avec la surface foliaire (BRÉDA et al., 1995; CIENCALA et LINDROTH, 1995; VERTESSY et al., 1997).

La troisième conséquence est que les indices de feuillaison permettent déjà une bonne estimation des variations de la surface foliaire réelle. Ce point est plus étonnant, car l'indice de feuillaison provient d'une notation qualitative globale des stades phénologiques des houppiers (cf. Méthodes). L'information est intéressante car c'est une caractérisation relativement facile à réaliser à l'échelle d'un peuplement. Par exemple, la notation des 40 individus du site expérimental nécessite moins d'une heure. Mais ces notations ne rendent pas compte de la surface foliaire réelle. En conséquence, il ne faut pas s'attendre à une stabilité de ces relations si l'on considère d'autres arbres, qui pourraient être au même stade phénologique mais avec une densité foliaire différente, comme cela peut s'observer dans le paysage. La remarque précédente rejoint la question de l'effet de la disponibilité en eau qui n'apparaît pas dans la relation décadaire entre la

transpiration normalisée par l'ETP et l'indice de feuillaison (fig. 2). En effet, on peut imaginer que suivant la saison des pluies, le stade pleine feuillaison d'un même arbre peut correspondre à une densité foliaire différente. Cela devrait engendrer un rapport J/ETP variable pour un même stade phénologique.

D'autre part, après une saison des pluies très favorable, comme en 1993 (cumul de 290 mm), la durée de la phase de feuillaison « maximale » tend à s'allonger et la défeuillaison de saison sèche chaude est moins marquée (données non publiées). Il faut donc s'attendre à des fluctuations du cycle saisonnier de transpiration quant à la durée et à l'intensité des principales phases identifiées, cela en fonction des caractéristiques de la saison des pluies.

Transpiration journalière durant la pleine feuillaison

À l'échelle journalière, la relation linéaire forte entre les flux de sève et l'ETP (fig. 3) suggère que le stade pleine feuillaison correspond effectivement à une stabilité de la surface foliaire réelle. Cette hypothèse est peut-être recevable globalement, mais elle est peu vraisemblable dans le détail. Le houppier est considéré en phase de pleine feuillaison quand globalement plus de 50 % des rameaux portent en majorité des feuilles épanouies, c'est-à-dire déployées. Mais ensuite, certains rameaux peuvent continuer à émettre des feuilles et de jeunes pousses peuvent se développer. D'autre part, une feuille « épanouie » continue à grandir et peut passer par exemple de quatre à dix paires de folioles. Ces processus non pris en compte par les notations phénologiques globales auront des conséquences sur la surface foliaire. Comme l'exprime l'équation simplifiée de la transpiration, la relation de la figure 3 implique en fait une certaine stabilité de la conductance du couvert durant cinq mois, c'est-à-dire du produit de la surface foliaire totale et de la conductance stomatique moyenne. Une hypothèse complémentaire peut être que certaines fluctuations de la surface foliaire réelle soient compensées par des évolutions inverses de la conductance stomatique, comme le montrent les résultats de MEINZER et GRANTZ (1990).

La discussion a mis en évidence l'intérêt de suivre également les dynamiques saisonnières de la conductance stomatique et surtout de la surface foliaire réelle malgré les difficultés que suppose cette dernière mesure.

Conclusion

Cette étude a permis de caractériser le cycle annuel de transpiration d'un individu moyen d'Acacia tortilis dans la zone nord-sahélienne. Le cycle observé sur une année, pour une saison des pluies défavorable et sur un nombre d'individus forcément limité, n'est vraisemblablement pas généralisable pour des caractéristiques précises comme la durée exacte des phases identifiées, l'importance des ruptures entre phases, l'intensité des flux transpiratoires ou les niveaux de contrainte indiqués

par le potentiel hydrique de base. Une caractérisation aussi globale sera d'autant plus robuste qu'elle s'appuiera sur une comparaison pluri-annuelle incluant des saisons des pluies contrastées. Malgré ces limites, la description établie a l'intérêt de constituer un premier canevas qui permettra de comparer les effets d'une saison des pluies plus favorable.

Remerciements

Cette étude a pu être réalisée grâce à l'équipe technique (M'Baye Youm, Yacinthe Tendeng, Baïdi Ly) et aux étudiants (A. L. Diagne, A.V. Goudiaby) de l'« Opération Acacia » menée dans le cadre du programme Savanes de l'IRD. Nous remercions particulièrement Michel Grouzis, qui est à l'origine du lancement de cette opération, et Roger Pontanier, qui a facilité son déroulement dans le cadre du programme Savanes. Enfin, nous tenons à remercier André Granier, Roland Huc et François Tardieu pour leurs remarques précieuses sur les résultats initiaux.

Auteurs

F. Do, A. Rocheteau IRD, B.P. 1386, Dakar, Sénégal, actuellement CNRS/CEFE, F-34293 Montpellier Cedex

Références bibliographiques

AKPO L. E.,

1993 – Influence du couvert ligneux sur la structure et le fonctionnement de la strate herbacée en milieu sahélien. Paris, Orstom, TDM n° 93, 175 p.

ALLEN S. J., GRIME V. L.,

1995 – Measurements of transpiration from savannah shrubs using sap flow gauges. Agric. For. Met., 75: 23-41.

AMÉGLIO T., ARCHER P.,

1996 – Représentativité du potentiel de base sur sols à humidité hétérogène. Agron., 16: 493-503.

BENSAÏD S., AIT MOHAND L., ECHAIB B.,

1996 – Évolution spatio-temporelle des peuplements d'Acacia tortilis (Forssk.) Hayne raddiana (Savi) Brenan dans les monts Ougarta (Sahara nord-occidental). Sécheresse, 7 (3): 173-178.

BERGER A., GROUZIS M., FOURNIER C.,

1996 – The water status of six woody species coexisting in the Sahel (Ferlo, Senegal). J. Trop. Ecol., 12: 607-627.

Bréda N., Granier A., Aussenac G.,

1995 – Effect of thinning on soil and tree water relations, transpiration and growth in an oak forest [Quercus petraea (Matt.) Liebl.]. Tree physiol., 15: 295-306.

Brenner A. J., Jarvis P. G., Vandenbeldt R. J.,

1991 – « Transpiration from a neem windbreak in the Sahel ». In: Soil water balance in the Sudano-Sahelian Zone, Proceedings of the Niamey Workshop, February 1991, IAHS Publ. n° 199: 375-385.

CABIBEL B., Do F.,

1991 – Mesures thermiques des flux de sève et comportement hydrique des arbres.

Il. Évolution dans le temps des flux de sève et comportement hydrique des arbres en présence ou non d'une irrigation localisée.

Agron., 11:757-766.

CHOISNEL E., DE VILLÈLE O., LACROZE F.,

1992 — Une approche uniformisée du calcul de l'évapotranspiration potentielle pour l'ensemble des pays de la communauté européenne. Luxembourg, Commission des Communautés européennes, 170 p.

CIENCALA E., LINDROTH A.,

1995 — Gas-exchange and sap flow measurements of salix viminalis trees in short-rotation forest.

I. Transpiration and sap flow.

Trees, 9: 289-294.

Desert Margin Initiative,

1996 – Propositions du Sénégal. Ministère de l'Agriculture, Institut sénégalais de recherche agricole, Bureau pédologique du Sénégal, 23 p.

Desert Margin Initiative,

1997 – A proposal for an integrated national, regional, and international research program for developing sustainable natural resource management options to combat land degradation in sub-Sahara Africa. Submitted to GEF by ICRISAT as the convening center on behalf of a consortium of national, sub-regional, international and advanced research organisations, 25 p.

Do F., ROCHETEAU A., DIAGNE L., GROUZIS M.,

1998 – Flux de sève et consommation en eau d'Acacia tortilis dans le Nord-Ferlo. In Campa C., Grignon C., Gueye M., Hamon S., éd.: L'Acacia au Sénégal, Paris, Orstom, Colloques et Séminaires : 64-80.

Do F.,

ROCHETEAU A.,

2002 a – Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes.

1. Field observations and possible remedies.

Tree Physiol., 22: 641-648.

Do F.,

ROCHETEAU A.,

2002 b – Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes.

2. Advantages and calibration of a noncontinuous heating system.

Tree Physiol., 22: 649-654.

FAGG C.W., GREAVES A.,

1990 – Acacia tortilis: 1925-1988. Annotated Bibliography n°F41. Oxford, Langdon K., CAB International, 36 p.

FOURNIER Ch.,

1995 — Fonctionnement hydrique de six espèces ligneuses coexistant dans une savane sahélienne (Région du Ferlo, Nord-Sénégal). Paris, Orstom, TDM n° 132, 165 p.

GAYE C. B., EDMUNDS W. M.,

1996 – Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal. *Environ. Geol.*, 27: 246-251.

GRANIER A.,

1985 – Une nouvelle méthode pour la mesure des flux de sève dans le tronc des arbres. *Ann. Sci. For.*, 42: 193-200.

GRANIER A.,

1987 – Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique. Ann. Sci. For., 44 : 1-14.

GRANIER A., BIRON P., BRÉDA N., PONTAILLER J.Y., SAUGIER B.N.

1996 – Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods.

Global Change Biol., 2: 265-274.

GROUZIS M., SICOT M.,

1980 – « A method for the phenological study of browse population in the Sahel: the influence of some ecological factors ». In Le Houérou H. N., ed.: Browse in Africa, Addis-Abeba, ILCA: 233-240.

JARVIS P. G., MAC NAUGHTON K. G.,

1986 – Stomatal control of transpiration: scaling up from leaf to region.

Advances in ecological research, 15: 1-49.

LE HOUÉROU H. N.,

1989 – The Grazing Land Ecosystems of the African Sahel. Berlin, Springer-Verlag, Ecological studies, n° 75, 282 p.

LHÔTE H.,

1961 – Au sujet de l'arbre du Ténéré. Bull. liaison sahar., 12 : 49-54.

LOUSTAU D., GRANIER A., EL HADJ MOUSSA F.,

1990 – Évolution saisonnière du flux de sève dans un peuplement de pins maritimes. *Ann. Sci. For.*, 21:599-618.

MAIGNIEN R.,

1965 – Carte pédologique du Sénégal au 1/1 000 000. Centre de Dakar-Hann, Orstom.

MAYDELL H. J. VON.,

1983 – Arbres et arbustes du Sahel : leurs caractéristiques et leurs utilisations. Eschborn, Schriftenreihe der GTZ n° 147, 531 p.

MEINZER F. C., GRANTZ D.A.,

1990 – Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity.

Plant Cell Environ., 13: 383-388.

MONTEITH J. L.,

1965 - « Evaporation and Environment ». In Foff G.E., ed.: The state and movement of water in living organisms,
Symp. Soc. Exp. Biol., Swansea, Cambridge University Press: 205-234.

NIZINSKI J., MORAND D., FOURNIER Ch.,

1994 – Actual evapotranspiration of a thorn scrub with Acacia tortilis and Balanites aegyptiaca (North Senegal). Agric. For. Meteorol., 72:93-111.

POUPON H.,

1980 – Structure et dynamique de la strate ligneuse d'une steppe sahélienne du Nord-Sénégal. Paris, Orstom, Travaux et Document, n° 115, 351 p.

ROUPSARD O., FERHI A., GRANIER A., PALLO F., DEPOMMIER D., MALLET B., JOLY H., DREYER E.,

1998 – « Fonctionnement hydrique et profondeur de prélèvement de l'eau de Faidherbia Albida dans un parc agroforestier soudanien ». In Campa C., Grignon C., Gueye M., Hamon S., éd.: L'Acacia au Sénégal, Paris, Orstom, coll. Colloques et séminaires: 81-103.

ROUPSARD O., JOLY H., DREYER E.,

1996 – « Écophysiologie de Faidherbia albida : fonctionnement hydrique en parc agroforestier et variabilité intraspécifique de caractéristiques juvéniles ». In Cirad (éd.) : Les parcs à Faidherbia, Nogent-sur-Marne : 85-102.

SANCHEZ P.A.,

1995 – Science in agroforestry. *Agrofor. Syst.*, 30 : 5-55.

SOUMARÉ A., GROOT J. J. R., KONÉ D., RADERSMA S.,

1994 – Structure spatiale du système racinaire de deux arbres du Sahel : Acacia seyal et Sclerocarya birrea. Wageningen, Rapport PSS n° 5, 37 p.

STOCKER O.,

1970 – Der Wasser- und Photosynthese-Haushalt von Wüstenpflanzen der mauretanishen Sahara.

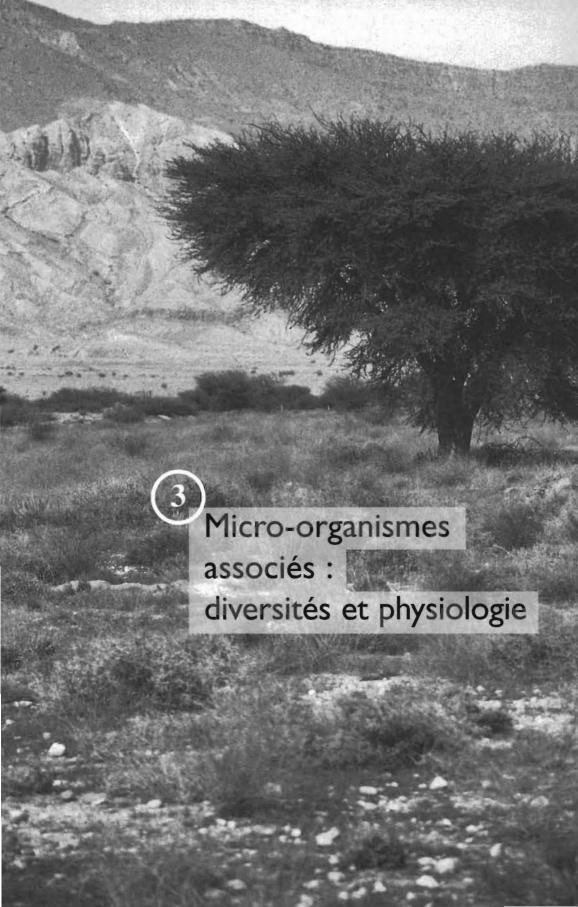
I. Regengrüne und immergrüne Bäume. *Flora*, 159: 539-572.

ULLMAN I.,

1985 – Tagesgänge von Transpiration und stomatärer Leitfähigkeit Sahelischer und Saharishcher Akazien in der Trockenzeit.

Flora, 176: 383-409.

VALANCOGNE C., GRANIER A.,


1993 – «Intérêt des méthodes thermiques de mesure des flux de sève pour l'étude du bilan hydrique des savanes ». In : Soil water balance in the Sudano-Sahelian Zone, Proceedings of the Niamey Workshop, February 1991, IAHS Publ. n° 199 : 387-400.

VERTESSY R.A., HATTON T.J., REECE P., O'SULLIVAN S. K., BENYON R. G.,

1997 – Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. *Tree Physiol.*, 17:747-756.

WHITE F.,


1983 – The vegetation of Africa. Paris, Unesco, Natural Resources Research n° 20, 256 p.

▼ Acacia raddiana au Bled Talah (Tunisie) avec une steppe à ligneux bas. © E. Le Floc'h

Diversité taxonomique et propriétés symbiotiques des rhizobia nodulant Acacia raddiana au nord et au sud du Sahara

P. DE LAJUDIE, B. DREYFUS, C. BOIVIN, S. BÂ, A. N'DIAYE, J. LORQUIN, M. NEYRA, C. DETREZ, A. WILLEMS, M. GILLIS, H. JEDER, J.-C. PROMÉ

Résumé

Nous avons étudié une collection de 76 nouveaux isolats bactériens de nodules obtenus par piégeage sur plantes d'Acacia tortilis subsp. raddiana in vitro, inoculées avec des suspensions de sols prélevés dans divers sites au nord (Tunisie) et au sud (Sénégal, Mauritanie) du Sahara, en comparaison avec 54 souches de références. L'analyse des nouveaux isolats par RAPD et SDS-PAGE a montré une grande diversité taxonomique parmi les isolats d'A. tortilis subsp. raddiana. En effet, bien que toutes les souches puissent être qualifiées de « rhizobium à croissance rapide », elles se répartissent en au moins 9 groupes différents, dont plusieurs ne correspondent à aucun des groupes de rhizobia déjà décrits. Aucune relation entre la position taxonomique des souches, leur origine géographique, les conditions édaphiques ou la profondeur d'isolement n'a pu être établie. La caractérisation symbiotique des souches d'A. tortilis subsp. raddiana a, au contraire, montré une grande homogénéité des caractéristiques symbiotiques majeures. Toutes les souches nodulent également A. senegal, Prosopis juliflora et Leucaena leucocephala, qui constituent avec A. tortilis subsp. raddiana un groupe d'inoculation. L'analyse des profils chromatographiques des facteurs Nod (FN) d'une quinzaine de souches réparties dans les différents groupes taxonomiques montre qu'ils sont très similaires. L'homogénéité structurale des FN des souches d'A. tortilis subsp. raddiana a été confirmée par la détermination de la structure des FN de guelques souches représentatives. Cette étroite relation entre FN et plante d'isolement/spectre d'hôte indépendamment de la taxonomie des souches suggère l'existence d'une Un arbre au désert, Acacia raddiana

forte pression de sélection de la part de la plante hôte et confirme nos observations précédentes, à savoir que les facteurs Nod sont de bons indicateurs du potentiel de nodulation d'un rhizobium donné.

Mots-clés:

RHIZOBIA TROPICAUX, ACACIA TORTIUS SUBSP, RADDIANA, TAXONOMIE, FACTEURS NOD,
SYMBIOSE FIXATRICE D'AZOTE.

Abstract

We studied a collection of 76 new bacterial isolates from nodules developed on Acacia tortilis subsp. raddiana plants inoculated in vitro with soil suspensions harvested in different sites in North (Tunisia) and South (Senegal, Mauritania) parts of Sahara. RAPD and SDS-PAGE analyses in comparison with 54 reference strains from diverse origins showed great taxonomic diversity among the new isolates. All of them are fast-growing and form at least 9 different groups, several of which could correspond to undescribed groups. No relationship could be established between taxonomic groups, geographical origin (North/South of Sahara) of the strains, edaphic conditions, or depth of soil sampling (down to - 32 m). Opposite to their taxonomic diversity, the new isolates share identical main symbiotic properties. All strains nodulating A. tortilis subsp. raddiana can also nodulate Prosopis juliflora, Acacia senegal and Leucaena leucocephala, these four plants then constituting a cross-inoculation group. By thin-layer chromatography, we showed that 20 A. tortilis subsp. raddiana strains, representative of the different taxonomic groups, share very similar Nod factor (NF) profiles, independently from their geographical origins. NF structure homogeneity was confirmed by NF structure determination of some representative strains. The consistency between NF and plant of isolation/nodulation spectrum, independently of the taxonomic position of the strains suggests a high selection pressure from the plant, and confirms our previous observations that NF are good markers for predicting the nodulation potential of a given rhizobial strain.

Keywords:

TROPICAL RHIZOBIA, ACACIA TORTILIS SUBSP. RADDIANA, TAXONOMY, NOD FACTORS, NITROGEN-FIXING SYMBIOSIS.

Introduction

Comme de nombreuses plantes de la famille des Légumineuses, la plupart des espèces d'Acacia natives d'Afrique peuvent développer des nodules sur leurs

racines et établir ainsi une relation symbiotique fixatrice d'azote avec des bactéries du sol communément appelées rhizobium (HARRIER et al., 1995). L'établissement et le fonctionnement de cette symbiose sont le résultat d'une interaction moléculaire entre la plante et la bactérie, contrôlée au niveau génétique par chacun des deux partenaires. Les plantes sécrètent des flavonoïdes qui, lorsqu'ils sont reconnus par le rhizobium, déclenchent la biosynthèse bactérienne de molécules lipo-oligosaccharidiques appelées facteurs Nod. Ceux-ci induisent chez la plante la formation d'un organe spécialisé, le nodule, à l'intérieur duquel la bactérie se différencie en bactéroïde capable de fixer l'azote atmosphérique (DÉNARIÉ et al., 1996; SPAINK, 1996).

Il a longtemps été communément admis que les arbres, en particulier les acacias, étaient nodulés par des rhizobia à croissance lente, mais TRINICK (1965, 1968 et 1980) a montré par la suite que des souches à croissance rapide étaient capables de noduler certains arbres appartenant aux genres Leucaena, Mimosa, Acacia et Sesbania.

En ce qui concerne A. tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan au Sénégal, nos premières études avaient montré que l'espèce était nodulée par des rhizobia à croissance rapide (DREYFUS et DOMMERGUES, 1981). Depuis cette époque, la taxonomie bactérienne a fait de grands progrès, devenant « polyphasique » en prenant en compte tout un ensemble de caractéristiques phénotypiques et génotypiques (VANDAMME et al., 1996). La classification de ces rhizobia à croissance rapide s'est ainsi considérablement affinée (YOUNG et HAUKKA, 1996), et on y distingue maintenant quatre genres : Rhizobium (JORDAN, 1982), Azorhizobium (DREYFUS et al., 1988), Sinorhizobium (DE LAJUDIE et al., 1994) et Mesorhizobium (JARVIS et al., 1997). Phylogénétiquement, les genres Rhizobium et Sinorhizobium sont proches du genre Agrobacterium (WILLEMS et COLLINS, 1993), Mesorhizobium est proche de Phyllobacterium, (JARVIS et al., 1997) et Azorhizobium est proche de Xanthobacter (RAINEY et WIEGEL, 1996).

Il est ainsi apparu qu'une même plante peut s'associer avec plusieurs types de microsymbiontes. Le soja (Glycine max) peut être nodulé par 6 espèces appartenant à 3 genres différents : Bradyrhizobium japonicum, B. elkanii, B. liaoningense, Sinorhizobium fredii, S. xinjiangensis et Mesorhizobium tianshanense ; Sesbania rostrata peut être nodulé par trois espèces appartenant à deux genres différents : Sinorhizobium saheli, S. terangae et Azorhizobium caulinodans (DREYFUS et al., 1988 ; DE LAJUDIE et al., 1994 ; TRÜPER et DE CLARI, 1997) ; les souches isolées d'Acacia sont génétiquement diverses et appartiennent aux genres Bradyrhizobium (DREYFUS et DOMMERGUES, 1981; DUPUY et al., 1994), Sinorhizobium (DE LAJUDIE et al., 1994 ; LORTET et al., 1996 ; NICK et al., 1995, 1999), et Mesorhizobium (DE LAJUDIE et al., 1998 b).

Cependant, des tests de nodulation réalisés avec une collection de rhizobia isolés d'Acacia et de Sesbania et appartenant aux espèces Sinorhizobium saheli, S. terangae et Mesorhizobium plurifarium ont montré que, malgré cette diversité taxonomique, les isolats d'une même plante présentent une spécificité d'hôte équivalente. Parmi différents marqueurs moléculaires de la nodulation évalués, seuls les profils chromatographiques des facteurs Nod ont regroupé les souches

en fonction de leur spectre d'hôte. Il a été proposé d'utiliser l'analyse chromatographique des facteurs Nod comme méthode de caractérisation symbiotique des rhizobia permettant l'analyse de leur diversité symbiotique (LORTET et al., 1996) et de l'associer à la taxonomie pour la description de biovars à l'intérieur de l'espèce (souches de la même espèce mais de spécificités d'hôte différentes).

Nous rapportons dans cette étude un ensemble de données sur la nodulation d'A. tortilis subsp. raddiana en utilisant 54 souches de diverses provenances de notre collection et 76 nouveaux isolats de nodules d'A. tortilis subsp. raddiana provenant de diverses régions de son aire de répartition naturelle, notamment au nord et au sud du Sahara. La diversité des nouveaux isolats a été évaluée d'un point de vue taxonomique par les techniques de RAPD (Random Amplified Polymorphism DNA) et SDS-PAGE (analyse des protéines cellulaires totales sur gel de polyacrylamide-SDS), et d'un point de vue symbiotique par l'étude de leurs spectres d'hôtes, de leur efficience et de l'analyse de leurs facteurs Nod.

Constitution d'une collection d'isolats d'A. tortilis subsp. raddiana

Il est rare de trouver des nodules d'arbre dans la nature, et extrêmement difficile d'apporter la preuve que des nodules mis en évidence dans un sol appartiennent de fait à l'arbre qui se trouve à proximité. Cela nous a contraints à utiliser une procédure de « piégeage à partir du sol », bien que celle-ci constitue un biais par rapport à l'isolement direct à partir d'un nodule prélevé sur le terrain. L'isolement a été effectué à partir de nodules formés sur des individus d'A. tortilis subsp. raddiana inoculés in vitro avec des échantillons de sols prélevés dans diverses régions : pour le nord du Sahara, la station de Haddej, en Tunisie ; pour le sud du Sahara, les sols ont été prélevés dans le sud de la Mauritanie et au Sénégal ; ces sols représentent divers écosystèmes, jusqu'à des zones salées, et sont issus de prélèvements effectués à différentes profondeurs, jusqu'à - 32 mètres. Au total, 76 nouveaux isolats d'A. tortilis subsp. raddiana ont ainsi été obtenus (tabl. I).

Analyse moléculaire de la diversité taxonomique

En accord avec nos précédents travaux (DREYFUS et DOMMERGUES, 1981), toutes les souches que nous avons isolées de A. tortilis subsp. raddiana peuvent être considérées comme des rhizobia à croissance rapide, puisqu'elles forment des

√ Tableau I – Liste des souches.

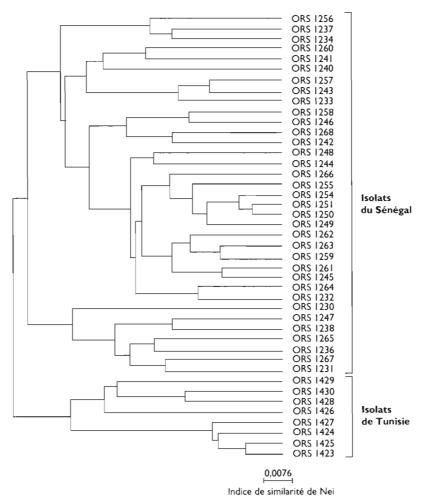
N° d'origine	N° LMG	Plante d'isolement ou origine	Origine géographique	Conditions édaphiques / Profondeur de prélèvement	Référence ou source
Nouveaux isolats					
ORS40	15168	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	argilo-sableux, 25 cm	ce travail
ORS46	15169	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 50 cm	ce travail
ORS47	15170	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 75 cm	ce travail
ORS48		Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 50 cm	ce travail
ORS49	15171	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 50 cm	ce travail
ORS50	15172, 15173	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 50 cm	ce travail
ORS1042	15283	Acacia tortilis subsp. raddiana	Sénégal (Cambéréne)		ce travail
ORS1043	15284	Acacia tortilis subsp. raddiana	Sénégal (Mbidi)	bas fond 0-15 cm	ce travail
ORS1044	15285	Acacia tortilis subsp. raddiana	Sénégal (Richard-Toll)		ce travail
ORS1046	15286	Acacia tortilis subsp. raddiana	Sénégal (Cambéréne)		ce travail
ORS1080	15287	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
ORS1081	15288	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
OR\$1082	15289	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
ORS1083	15290	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
ORS1084	15291	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
OR\$1085	15292	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
ORS1086	15293	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
ORS1087	15294	Acacia tortilis subsp. raddiana	Sénégal (Souilène)	- 25 - 50 cm	ce travail
ORS1089	15295	Acacia tortilis subsp. raddiana	Sénégal (Mbidi)		
ORS1091	15296	Acacia tortilis subsp. raddiana	Sénégal (Diourbel-Lagbar)		ce travail
ORS 1095	15297	Acacia tortilis subsp. raddiana	Sénégal Diourbel-Lagbar)		de Lajudie et al., 1998
ORS 1096	15298	Acacia tortilis subsp. raddiana	Sénégal (Doundodji)		de Lajudie et al., 1998
ORS1100	15299	Acacia tortilis subsp. raddiana	Sénégal (Saint-Louis)		ce travail
OR\$1101	18.	Acacia tortilis subsp. raddiana	Sénégal (Saint-Louis)		ce travail
OR\$1230	15306	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1231	15307	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1232	15308	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1233	15309	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1234	15310	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1236	15311	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail

N° d'origine	N° LMG	Plante d'isolement ou origine	Origine géographique	Conditions édaphiques / Profondeur de prélèvement	Référence ou source
ORS1237	15312	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1238	15313	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1239	15314	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1240	15315	Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1241		Acacia tortilis subsp. raddiana	Sénégal (région St-Louis)	sol salé	ce travail
ORS1242		Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	région humide	ce travail
ORS1243	15316	Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	région humide	ce travail
ORS1244	15317	Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	région humide	ce travail
ORS1245		Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	région humide	ce travail
ORS1246		Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	région humide	ce travail
ORS1247		Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	région humide	ce travail
ORS1248		Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	humide non inondé	ce travail
ORS1249		Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	humide non inondé	ce travail
ORS1250		Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	humide non inondé	ce travail
ORS1251	15318	Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	humide non inondé	ce travail
ORS1254	15319	Acacia tortilis subsp. raddiana	Sénégal (Ferlo)	humide non inondé	ce travail
ORS1255	15320	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	0 - 50 cm	ce travail
ORS1256	15321	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	0 - 50 cm	ce travail
ORS1257	15322	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	0 - 50 cm	ce travail
ORS1258	15323	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 50 - 100 cm	ce travail
ORS1259	15324	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 50 - 100 cm	ce travail
ORS1260	15325	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 50 - 100 cm	ce travail
ORS1261	15326	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 50 - 100 cm	ce travail
ORS1262	15327	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 50 - 100 cm	ce travail
ORS1263	15328	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 50 - 100 cm	ce travail
ORS1264	15329	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 50 - 100 cm	ce travail
ORS1265	15330	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 31 - 32 m	ce travail
ORS1266	15331	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 31 - 32 m	ce travail
ORS1267	15332	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 31 - 32 m	ce travail
ORS1268		Acacia tortilis subsp. raddiana	Sénégal (région de Louga)	- 31 - 32 m	ce travail
ORS1281	15340	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)		ce travail

N° d'origine	N° LMG	Plante d'isolement ou origine	Origine géographique	Conditions édaphiques / Profondeur de prélèvement	Référence ou source
ORS1282	15341	Acacia tortilis subsp. raddiana	Sénégal (région de Louga)		ce travail
ORS1310	15342	Acacia tortilis subsp. raddiana	Burundi		ce travail
ORS1316	15343	Acacia tortilis subsp. raddiana	Mauritanie (Sud)		ce travail
ORS1318	15344	Acacia tortilis subsp. raddiana	Mauritanie (Sud)		ce travail
ORS1319	15345, 15346	Acacia tortilis subsp. raddiana	Mauritanie (Sud)		ce travail
ORS1329	15347	Acacia tortilis subsp. raddiana	Mauritanie (Sud)		ce travail
ORS1333	15348	Acacia tortilis subsp. raddiana	Mauritanie (Sud)		ce travail
RAT 900		Acacia tortilis subsp. raddiana	Tunisie (Haddei)		ce travail
RAT 901	15350	Acacia tortilis subsp. raddiana	Tunisie (Haddej)		ce travail
RAT 902	15351	Acacia tortilis subsp. raddiana	Tunisie (Haddej)		ce travail
RAT 904	15352	Acacia tortilis subsp. raddiana	Tunisie (Haddej)		ce travail
RAT 905	15353	Acacia tortilis subsp. raddiana	Tunisie (Haddej)		ce travail
RAT 907	15354	Acacia tortilis subsp. raddiana	Tunisie (Haddei)		ce travail
RAT 908	15355	Acacia tortilis subsp. raddiana	Tunisie (Haddei)		ce travail
RAT 909		Acacia tortilis subsp. raddiana	Tunisie (Haddej)		ce travail
Mesorhizobium					
blurifarium					
ORS 13	7921	Acacia sp.	Sénégal		de Lajudie et al., 1998 l
ORS 654	10056	Leucaena diversifolia	Brésil		de Lajudie et al., 1998 l
ORS 655	10061	Leucaena pulvurulenta	Brésil		de Lajudie et al., 1998
ORS 656	10093	Leucaena diversifolia	Brésil		de Lajudie et al., 1998
ORS 1018	11881	Acacia senegal	Sénégal (Palmarin)		de Lajudie et al., 1998 l
ORS 1038	11896	Acacia senegal	Sénégal (Ferlo)		de Lajudie et al., 1998 l
ORS 1040	11898	Acacia senegal	Sénégal (Ferlo)		de Lajudie et al., 1998 l
ORS 38	11931	Prosopis juliflora	Sénégal (Mbao)		de Lajudie et al., 1998 l
ORS 1001	7836	Acacia senegal	Sénégal		de Lajudie et al., 1998 l
ORS 1002	7854	Acacia senegal	Sénégal		de Lajudie et al., 1998
ORS 1004	7848	Acacia senegal	Sénégal		de Lajudie et al., 1998 l
ORS 1010	7853	Acacia senegal	Sénégal		de Lajudie et al., 1998 l
ORS 1014t1	7849t1	Acacia senegal	Sénégal		de Lajudie et al., 1998

N° d'origine	N° LMG	Plante d'isolement ou origine	Origine géographique	Conditions édaphiques / Profondeur de prélèvement	Référence ou source
ORS 1015	7839	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1020	11883	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1024	11884	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1026	11886	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1029	11889	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1030	11890	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1031	11891	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1032 ^T	11892 ^T	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1035	11893	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1036	11894	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1037	11895	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1038	11896	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS 1040	11898	Acacia senegal	Sénégal		de Lajudie et al., 1998 b
ORS1088	11880	Acacia seyal	Sénégal		de Lajudie et al., 1998 b
Mesorhizobium loti					
NZP 2230	6126	Lotus maroccanus	Maroc		Jarvis et al., 1986
NZP 2213 ^T	6125 ^T	Lotus corniculatus	Nouvelle-Zélande		Jarvis et al., 1986
ORS 652	6123	Lotus divaricatus	Nouvelle-Zélande		
Mesorhizobium					
ciceri					
UPM-Ca7T	17150 ^T	Cicer arietinum	Espagne		Nour et al., 1994
522	17149	Cicer arietinum	Russie		Nour et al., 1994
Mesorhizobium					
mediterraneum					
UPM-Ca142	14990	Cicer arietinum	Espagne		Nour et al., 1995
Mesorhizobium					
nuakuii					
IAM 14158 ^T	14107 ^T	Astragalus sinicus	Nanjing, Chine		Chen et al., 1991

N° d'origine	N° LMG	Plante d'isolement ou origine	Origine géographique	Conditions édaphiques / Profondeur de prélèvement	Référence ou source
Sinorhizobium					
fredii					
USDA 205 ^T	6217 ^T	Glycine max	Henan, Chine		Jarvis et al., 1986
USDA 191	8317	Soil	Shanghai, Chine		Jarvis et al., 1986
Sinorhizobium					
meliloti					
NZP 4009	6130	Medicago sativa	Australie		
Sinorhizobium					
medicae					
m75 (Hambi 1808)	16579	Madicago sativa			Eardly et al., 1990
m102 (Hambi 1809)	16580	Medicago sativa Medicago sativa			Eardly et al., 1990
Hambi 1837	16581	Medicago sauva			K. Lindström
	10301				K. Linustroin
Sinorhizobium					
terangae*			The state of the s		
ORS 8	11870	Sesbania rastrata	Sénégal		
ORS15	7833	Sesbania sp.	Sénégal (Mbidi)		de Lajudie et al., 1994
ORS 19	7841t1	Sesbania cannabina	Sénégal		de Lajudie et al., 1994
ORS 22	6463	Sesbania rastrata	Sénégal		de Lajudie et al., 1994
ORS 51	7843	Sesbania rostrata	Sénégal		de Lajudie et al., 1994
ORS 53	11860	Sesbania rastrata	Sénégal		de Lajudie et al., 1994
ORS 604	11865	Sesbania aculeata	Sénégal (Bel Air)		de Lajudie et al., 1994
ORS 929	8313t1	Acacia sp.	Sénégal		de Lajudie et al., 1994
ORS 613	11866	Sesbania sesban	Sénégal		de Lajudie et al., 1994
ORS1007	7847_	Acacia laeta	Sénégal		de Lajudie et al., 1994
ORS 1009 ^T	7834 ^T	Acacia laeta	Sénégal (Mbidi)		de Lajudie et al., 1994
ORS 1016	7851	Acacia laeta	Sénégal (Bakel)		de Lajudie et al., 1994
ORS 1025		Acacia senegal	Sénégal		de Lajudie et al., 1994
ORS1045	11901	Acacia tortilis subsp. raddiana	Sénégal (Sangonie)		de Lajudie et al., 1994


^{*} La nomenclature S. teranga (DE LAJUDIE et al., 1994) a été corrigée en S. terangae (TRÜPER et DE CLARI, 1997).

N° d'origine	N° LMG	Plante d'isolement ou origine	Origine géographique	Conditions édaphiques / Profondeur de prélèvement	Référence ou source
ORS 1047 ORS 1057 ORS 1058 ORS 1071 ORS 1072 ORS 1073	11903 11911 11912 11924 11925 11926	Acacia horrida Acacia mollissima Acacia mollissima Acacia senegal Acacia senegal Acacia senegal	Sénégal Sénégal Sénégal Sénégal Sénégal (Dahra) Sénégal (Djokoul)		de Lajudie et al., 1994 de Lajudie et al., 1994
Sinorhizobium saheli					
ORS 12 ORS 600 ORS 609 ^T ORS 611	7835t1 11864 7837 ^T 7842	Sesbania pachycarpa Sesbania cannabina Sesbania grandiflora	Sénégal Sénégal Sénégal (Bel Air) Sénégal (Bel Air)		de Lajudie et al., 1994 de Lajudie et al., 1994 de Lajudie et al., 1994 de Lajudie et al., 1994
Rhizobium leguminosarum NZP 561	6122	Trifolium repens	Australie		B. Jarvis
Rhizobium tropici Group a					
CFN 299 CNPAF 119	9517 9502	Phaseolus vulgaris Phaseolus vulgaris	Brésil		Martinez-Romero et al., 199 Moreira et al., 1993
Group b CIAT 899 ^T C-05	9503 [™] 9518	Phoseolus vulgaris Phaseolus vulgaris	Colombie		Martinez-Romero et al., 199
Rhizobium etli ORS 645 ^T	11937 [™]	Phaseolus vulgaris	Mexique		Segovia et al., 1993
Rhizobium galegae HAMBI 540 ^T	6214 ^T	Galega orientalis	Finlande		
HAMBI 1147 HAMBI 1428	6215 15143	Galega orientalis	Russie		

 ∇ Tableau I (suite et fin).

N° d'origine	N° LMG	Plante d'isolement ou origine	Origine géographique	Conditions édaphiques / Profondeur de prélèvement	Référence ou source
Agrobacterium biovar I ATCC 19358 [†] CDC A6597	140 [†] 383				
Agrobacterium vitis Pan. AG61 NCPPB 1771	257 233				
Azorhizobium caulinodans ORS 571 ^T FY12	6465 [™] 11352	Sesbania rostrata Sesbania rostrata	Sénégal Sénégal		Dreyfus et al., 1988 Rinaudo et al., 1991
Allorhizobium undicola ORS 991 ORS 992 ^T ORS 995 ORS 996 ORS 997 ORS 998	11874 11875 [†] 11876 11877 11878 11879	Neptunia natans Neptunia natans Neptunia natans Neptunia natans Neptunia natans Neptunia natans	Sénégal (Kaolack) Sénégal (Kaolack) Sénégal (Kaolack) Sénégal (Kaolack) Sénégal (Kaolack) Sénégal (Kaolack) Sénégal (Dakar-Bel Air)		de Lajudie et al., 1998 a de Lajudie et al., 1998 a
Sinorhizobium sp. NGR 234	16375	Dolichos lablab			
Rhizobium sp. ORS 507 ORS 615 ORS 911 ORS 1019		Sesbania pachycarpa Sesbania rostrata Acacia farnesiana Acacia senegal	Sénégal Sénégal Sénégal Sénégal		
Bradyrhizobium sp. ORS 17 ORS 101		Alysicarpus ovalifolius Faidherbia albida	Sénégal Sénégal		

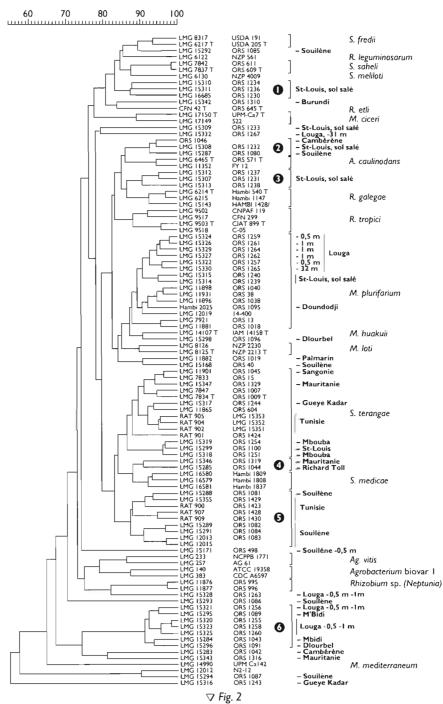
colonies en 48 heures sur milieu YMA. Pour caractériser ces souches, nous avons employé deux techniques dont le niveau de résolution se situe entre la souche et l'espèce (VANDAMME et al., 1996) ; l'une, relativement récente, est génotypique (RAPD, Random Amplified Polymorphic DNA), et l'autre phénotypique (analyse des profils de protéines totales par SDS-PAGE).

Dendrogramme (coefficient de Jaccard en utilisant la méthode UPGMA) montrant les relations entre 43 isolats de nodules d'Acacia tortilis subsp. raddiana sur la base de leurs profils RAPD.

Les profils RAPD (utilisant l'amorce OP B14) sont analysés visuellement et chaque produit d'amplification est identifié en fonction de sa position de migration. Chaque isolat est examiné pour la présence ou l'absence de chaque amplifiat. Le dendrogramme est ensuite construit par comparaison par paires sur la base de la proportion des amplifiats communs et sur les indices de Nei, en utilisant la technique UPGMA (Unweighted Pair Group Method using Arithmetic Averages).

RAPD

Afin d'évaluer le degré de diversité génomique des nouveaux isolats obtenus à partir de nodules d'A. tortilis subsp. raddiana, 43 d'entre eux ont été analysés par une technique RAPD modifiée en utilisant deux combinaisons d'amorces (Williams et al., 1990). Les résultats montrent une grande diversité génomique puisque aucun profil complet n'est conservé parmi les isolats. Les isolats de Tunisie forment un groupe qui semble diverger de ceux formés par les isolats du Sénégal (fig. 1). Cependant, le pouvoir discriminant de cette technique s'est avéré trop fin pour une technique de groupage ; nous avons donc employé une autre technique, l'analyse des protéines cellulaires totales par SDS-PAGE, déjà éprouvée dans le cas des rhizobia (MOREIRA et al., 1993 ; DE LAJUDIE et al., 1994, 1998 a, 1998 b).


SDS-PAGE

La technique SDS-PAGE est simple et rapide, très informative (au niveau de l'espèce) et nous disposons d'une importante base de données avec de nombreuses souches de référence (DE LAJUDIE et al., 1994, 1998 a, 1998 b). Les protéines cellulaires totales sont purifiées à partir d'une culture bactérienne et séparées sur gel de polyacrylamide en présence de SDS (SDS-PAGE). Chaque étape de l'expérimentation est réalisée dans des conditions très standardisées. Le profil électrophorétique obtenu pour chaque souche est digitalisé, normalisé et analysé à l'aide du logiciel GelCompar (Applied Maths, Kortrijk, Belgique), et confronté à la base de données.

L'analyse des isolats de A. tortilis subsp. raddiana par la technique SDS-PAGE a confirmé la diversité mise en évidence par RAPD en faisant apparaître une grande hétérogénéité de profils électrophorétiques. Les résultats, illustrés par la figure 2, montrent qu'une vingtaine de ces souches sont regroupées avec les souches de référence de S. terangae, S. fredii, et M. plurifarium, suggérant que ces souches appartiennent à ces espèces. Les 56 autres souches sont réparties dans six groupes différents de ceux formés par les espèces décrites. Certains d'entre eux pourraient représenter des groupes nouveaux, mais leur place taxonomique reste à préciser par des techniques complémentaires. Des expériences préliminaires de séquençage d'une partie du gène codant pour l'ARNr 16S et d'hybridations ADN/ADN ont, jusqu'à présent, confirmé ces résultats.

Relation entre taxonomie et origine écologique, géographique et édaphique de la souche

Aucune relation n'a pu être établie entre l'origine géographique et écologique et le groupe électrophorétique des souches d'A. tortilis subsp. raddiana. Les souches tunisiennes, mauritaniennes et sénégalaises se groupent en mélange, notamment dans S. terangae. Certaines souches provenant de zones salées de la région de St-Louis (Sénégal) forment les groupes I et 2, mais d'autres appartiennent à différents groupes comprenant des souches d'autres provenances. À l'intérieur

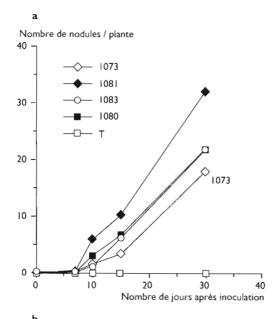
Dendrogramme montrant les relations entre les profils protéiques totaux obtenus par SDS-PAGE des souches de A. tortilis subsp. raddiana et de souches de référence de différentes espèces de Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium.

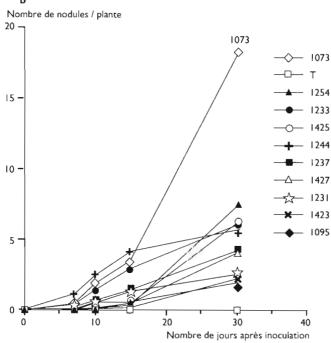
Le dendrogramme est construit en utilisant le logiciel GelCompar et la méthode UPGMA.

du groupe de M. plurifarium sont retrouvées des souches de diverses profondeurs (0-15 cm, 50-100 cm, 31-32 m), suggérant l'identité des populations de rhizobia en surface et en profondeur, de façon analogue à ce qui avait été montré dans le cas des souches de Bradyrhizobium de Faidherbia albida par DUPUY et al. (1994).

Analyse de la diversité symbiotique

Spectre d'hôte des isolats d'A. tortilis subsp. raddiana et nodulation d'A. tortilis subsp. raddiana


LORTET et al. (1996) ont montré que les souches isolées de divers Acacia (A. senegal, A. tortilis subsp. raddiana, A. laeta, A. mollissima, A. horrida, A. seyal) nodulent Acacia tortilis ainsi que Leucaena leucocephala et Prosopis juliflora.


Nous avons donc testé 13 nouveaux isolats d'A. tortilis subsp. raddiana pour leur capacité à noduler A. raddiana, A. senegal, Prosopis juliflora et Leucaena leucocephala. Le test que nous avons utilisé pour cela est celui décrit par GIBSON (1963) qui consiste à inoculer la racine d'une jeune plante bactériologiquement stérile en croissance dans un tube avec une culture de la souche à tester (6 à 8 répétitions par souche). Les 13 isolats testés (voir fig. 3) nodulent A. tortilis subsp. raddiana, A. senegal et L. leucocephala et également P. juliflora, à l'exception de la souche RAT 902.

L'étude comparative des cinétiques de nodulation d'A. tortilis subsp. raddiana par chacun de ces 13 isolats montre que le nombre de nodules observés après 30 jours de culture est très variable d'une souche à l'autre, de quelques nodules à plus de 30 nodules par plante (fig. 3). Parmi elles, les 3 souches originaires de Tunisie testées induisent moins de 7 nodules par plante. La représentation de la cinétique de la fixation d'azote mesurée par l'ARA montre une courbe en cloche dont la valeur maximale se situe entre 24 et 27 jours après l'apparition des nodules (N'DIAYE, 1996).

En parallèle, nous avons testé 54 souches de rhizobia de diverses provenances (plantes, régions) et de divers groupes taxonomiques pour leur capacité à induire la nodulation d'A. tortilis subsp. raddiana (tabl. II). Les souches trouvées capables de noduler A. tortilis subsp. raddiana sont en majorité des souches isolées à l'origine de plantes des genres Acacia, Prosopis, Leucaena et Neptunia et appartenant à S. terangae biovar acaciae, M. plurifarium et une nouvelle espèce (DE LAJUDIE et al., 1998 a). La souche de Sinorhizobium sp. NGR 234, à large spectre d'hôte, et la souche de R. tropici CFN 299 plus quelques autres souches non classées sont également capables d'induire la nodulation chez A. tortilis subsp. raddiana. Les souches de S. terangae biovar sesbaniae sont particulières en ce sens qu'elles sont capables d'induire une nodulation faible et retardée sur A. tortilis subsp. raddiana

Les résultats de ce criblage des souches de collection sur plantes indiquaient sept souches qui donnaient le meilleur effet sur la croissance de la plante et son aspect

∇ Fig. 3 (a et b)
 Cinétique de nodulation des souches d'A. tortilis subsp. raddiana pour une période de 30 jours. Six tubes par traitement et par souche ont été effectués.

a : souches dont le nombre de nodules > au témoin inoculé ORS 1073 ; b : souches dont le nombre de nodules < au témoin inoculé ORS 1073 (d'après BÂ, 1996).

\[
\times \text{Tableau II} - \text{Nodulation d'A. tortilis subsp. raddiana}
 \]
 \[
 \text{par des souches de collection.}
 \]
 \[
 \text{(D'après N'DIAYE, 1996; B\hat{R}, 1996; LORTET et al., 1996;}
 \]
 \[
 \text{de LAJUDIE et al., 1998 a et 1998 b).}
 \]

Souche	Plante d'isolement	Nodulation de A. tortilis subsp. raddiana
Bradyrhizobium sp.		
ÓRS 17	Alysicarpus ovalifolius	
ORS 101	Faidherbia albida	0 - 0
Azorhizobium caulinodans ORS 571 ^T	Sesbania rostrata	
Mesorhizobium loti ORS 652	Lotus divaricatus	
Rhizobium sp. ORS 507, ORS 615	Sesbania spp.	
ORS 911, ORS 1019	Acacia spp.	+ +
Rhizobium tropici CFN 299	Phaseolus vulgaris	
Sinorhizobium saheli ORS 600, ORS 609 [™] , ORS 611	Sesbania sp.	
ORS 12	Prosopis juliflora	+
Sinorhizobium terangae bv. sesbaniae ORS 8, ORS 15, ORS 19, ORS 604, ORS 613, ORS 22, ORS 51, ORS 53	Sesbania spp.	±d
Sinorhizobium terangae bv. acaciae ORS 929, ORS 1007, ORS 1009 ^T , ORS 1016, ORS 1025, ORS 1045, ORS 1047, ORS 1057, ORS 1058,		
ORS 1071, ORS 1072, ORS 1073	Acacia spp.	
Sinorhizobium sp. NGR 234	Dolichos lablab	+
Mesorhizobium plurifarium ORS 654, ORS 655, ORS 656 ORS 1001, ORS 1002, ORS 1004, ORS 1010, ORS 1014, ORS 1015,	Leucaena spp.	
ORS 1018, ORS 1017, ORS 1015, ORS 1018, ORS 1020, ORS 1024, ORS 1026, ORS 1029, ORS 1030, ORS 1031, ORS 1032 ^T , ORS 1035, ORS 1036, ORS 1037, ORS 1038, ORS 1040, ORS 1088	Acacia spp.	
Allorhizobium undicola ORS 991, ORS 992 ^T , ORS 995,		
ORS 996, ORS 997, ORS 998	Neptunia natans	+

Chaque résultat est la moyenne de 6 répétitions.

^{+ :} plus de 50 % des plantes testées nodulées ; - : aucune plante testée nodulée ; ± : entre 10 % et 50 % des plantes nodulées ; d : nodulation retardée.

(couleur verte). Ces souches ont été utilisées pour une seconde expérience dans laquelle on a mesuré l'activité de réduction d'acétylène (ARA), la masse de matière sèche totale et la quantité d'azote total des plantes. Les souches qui donnent les meilleurs résultats de fixation d'azote, ORS 1016, ORS 1072 et ORS 1073, appartiennent à Sinorhizobium terangae biovar acaciae (N'DIAYE, 1996).

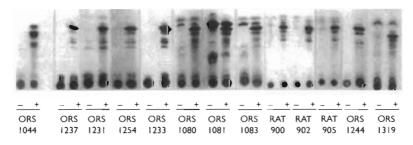
Ces trois souches, une souche isolée de Neptunia natans (ORS 998) et une souche de M. plurifarium (ORS 655) ont ensuite été utilisées pour des essais en pots, en milieu extérieur et conditions semi-contrôlées. Chaque souche a été inoculée à 6 plantes, et, après six mois la quantité d'azote fixé a été estimée : (1) par mesure de la quantité d'azote total des plantes par la méthode de Kjeldahl (BREMNER, 1965) ; (2) par mesure de leurs masses de matière sèche. L'analyse statistique montre que dans nos conditions, et sur cette période, on n'observe aucune incidence significative de la souche utilisée sur les paramètres mesurés, et même aucune incidence de l'inoculation, les valeurs obtenues pour le témoin non inoculé, lui-même nodulé par la contamination naturelle extérieure, étant au même niveau (tabl. III). Ces résultats indiquent qu'aucune des souches sélectionnées n'est compétitive vis-à-vis des populations naturelles et/ou plus performante que celles-ci.

√ Tableau III – Dosage d'azote par la méthode de Kjeldahl (BREMNER, 1965) de plants d'Acacia tortilis subsp. raddiana cultivés en pots pendant six mois.

	Poids sec (g/plante)				en azote (%)	Qu	antité d'az (g/plante)	ote
	P. aér.	Racines	Total	P. aér.	Racines	P. aér.	Racines	Total
Témoin	12,45a	8,63a	20,57a	1,20a	1,25a	0,15a	0,10a	0,24a
655	9,86a	6,50a	16,36a	1,32a	1,38a	0,13a	0,09a	0,22a
998	9,89a	5,94a	15,35a	I,4la	1,35a	0,14a	0,08a	0,23a
1016	13,56a	7,56a	21,12a	1,54a	1,32a	0,17a	0,10a	0,27a
1072	13,76a	9,03a	22,79a	1,23a	1,22a	0,17a	0,11a	0,28a
1073	13,38a	7,24a	20,62a	1,27a	1,24a	0,17a	0,09a	0,26a
CV %	30,9	27,4	28,0			32,7	29,2	39,3

Chaque valeur est la moyenne de six répétitions.

Pour chaque expérience, les nombres de la même colonne suivis de la même lettre ne diffèrent pas significativement au seuil de 5 % (test de Newman-Keuls, 1957). CV: coefficient de variation; P. aér.: parties aériennes (d'après N'DIAYE, 1996).


En conclusion de ces études de nodulation, il faut souligner l'existence d'un groupe de nodulation renfermant A. senegal, Prosopis juliflora, Leucaena leucocephala et A. tortilis subsp. raddiana nodulés par des souches de diverses positions taxonomiques, appartenant à différents genres comme Rhizobium, Sinorhizobium, Mesorhizobium.

Caractérisation des facteurs de nodulation

Les facteurs Nod sont constitués d'un squelette de 3 à 6 résidus N-acétyl-D glucosamine substitué par une chaîne d'acyl au niveau de l'extrémité non réductrice et portant diverses décorations aux deux extrémités de la chaîne oligosaccharidique. La nature de l'acide gras et des autres substitutions varie selon la souche ou l'espèce de rhizobia et joue un rôle déterminant dans la spécificité d'hôte de la bactérie. L'addition dans le milieu de culture d'un précurseur radioactif comme l'acide acétique marqué au carbone 14, qui est incorporé dans la molécule au niveau des groupements N-acétyl du squelette de base, permet de marquer radioactivement ces molécules et de les visualiser après séparation en CCM (chromatographie sur couche mince). La migration des produits s'effectue en fonction de leurs propriétés physico-chimiques.

La plupart des souches sauvages de rhizobia ne produisent pas suffisamment de facteurs Nod pour être détectées en CCM. Il est possible d'augmenter la production de facteurs Nod grâce à l'introduction d'un gène régulateur hétérologue nodD cloné dans un plasmide multicopie (LEROUGE et al., 1990; PRICE et al., 1992). Dix-huit souches isolées d'A. tortilis subsp. raddiana représentant les différents groupes électrophorétiques ont été modifiées par l'introduction du gène nodD l de Sinorhizobium sp. NGR234 cloné sur un plasmide multicopie selon la méthode décrite par LORTET et al. (1996).

À l'exception de la souche ORS 1044, toutes les souches surproductrices construites à partir des souches de A. tortilis subsp. raddiana étudiées présentent des profils chromatographiques très similaires, quelles que soient leur origine géographique et leur position taxonomique (BOIVIN et al., 1998). La figure 4 illustre ces résultats. L'homogénéité obtenue est supérieure à celle des profils de souches isolées de diverses espèces d'Acacia ou maintenues en laboratoire depuis de nombreuses années. Ces résultats suggèrent que dans des conditions où les bactéries sont en compétition, la plante exerce une pression de sélection en

∇ Fig. 4

Séparation en chromatographie sur couche mince des facteurs Nod de souches surproductrices d'A. tortilis subsp raddiana.

(+): induit par un flavonoide; (-): non induit.

La radioactivité est visualisée après 3 à 8 jours d'exposition avec un film Kodak X-OMAT K. (D'après Bâ et al., 2002)

faveur des souches produisant une population de facteurs Nod présentant des particularités structurales bien définies. Ces observations vont dans le même sens que celles de Streeter (résultats non publiés) qui a montré que des souches de *Bradyrhizobium japonicum* conservées plusieurs années au laboratoire présentent des profils de facteurs Nod différents, alors que des souches fraîchement isolées dans l'Ohio (USA) présentent des facteurs Nod similaires.

Les facteurs Nod de souches surproductrices dérivées de 4 souches appartenant à différents groupes taxonomiques ont été purifiés par HPLC (High Liquid Chromatography Pressure). Leur structure a été déterminée par LSIMS (Liquid Secondary Ion Mass Spectrometry), par GC (Chromatographie en phase gazeuse) et par des méthodes relatives à l'identification des sucres et des lipides (fig. 5 et tabl. IV), confirmant les similitudes observées entre les profils chromatographiques. Toutes les souches produisent des molécules pentamériques dont l'extrémité non réductrice porte un groupement N-méthyl, une chaîne d'acyl en C18:0, C18:1 ou C16:0, et un groupement carbamoyl pour la majorité des souches. L'extrémité réductrice peut être sulfatée ou non.

∇ Fig. 5

Structure des facteurs Nod des souches nodulant A. tortilis subsp. raddiana.

Pour R1, R2 et R3, voir le tableau IV.

√ Tableau IV – Structure chimique des facteurs Nod prépondérants de quelques souches surproductrices isolées de nodules de A. tortilis subsp. raddiana.

Souche	Espèce ou groupe SDS		Substitutions	
	Page	Ri	R2	R3
ORS1244 (pA28)	S. terangae (Sénégal)	C18:1, C18:0, C16:0	SO ₃ H/H	Carbamoyl
ORS1425 (pA28)	S. terangae (Tunisie)	C18:1	SO ₃ H/H	Carbamoyl
ORS1231 (pA28)	Groupe 3	C18:1	SO ₃ H/H	н
ORS1044 (pA28)	Groupe 4	C18:1, C18:0	SO ₃ H/H	Carbamoyl

R1, R2, R3: voir fig. 5.

Le plasmide pA28 contient le gène nodD1 de Rhizobium sp. NGR234 cloné sur un plasmide multicopie.

Conclusion

Cette étude constitue une première indication de la forte hétérogénéité taxonomique des souches de rhizobia capables d'induire la formation de nodules sur A. tortilis subsp. raddiana au Sénégal et en Tunisie, deux pays qui représentent le nord et le sud du Sahara. Toutes les souches de collection isolées de diverses espèces végétales ou récemment isolées qui nodulent A. tortilis subsp. raddiana sont des rhizobia à croissance rapide, et parmi elles des souches appartenant à Sinorhizobium (S. terangae biovar acaciae, S. saheli), Rhizobium (R. tropici) et Mesorhizobium (M. plurifarium). L'analyse de 76 nouveaux isolats de nodules d'A. tortilis subsp. raddiana de diverses origines a confirmé la diversité taxonomique des micro-symbiotes de A. tortilis subsp. raddiana dans la nature. Les groupes déterminés par analyse des souches SDS-PAGE sont généralement indépendants de l'origine géographique (nord ou sud du Sahara) de ces souches, des conditions écologiques ou édaphiques locales (sols salés ou non), ainsi que de leur profondeur d'origine. Nos résultats suggèrent que plusieurs groupes mis en évidence parmi les souches d'A. tortilis subsp. raddiana pourraient constituer des espèces génomiques non encore décrites. Il est maintenant nécessaire de valider ces groupes par des techniques complémentaires, en particulier phylogénétiques (séquençage du gène codant pour l'ARN ribosomal 16S, hybridations ADN/ADN), afin de préciser leur position taxonomique exacte et de proposer d'éventuelles conclusions nomenclaturales.

Par opposition à l'étude taxonomique, l'étude symbiotique a montré une grande homogénéité des caractéristiques symbiotiques des souches isolées d'A. tortilis subsp. raddiana. Toutes les souches étudiées présentent le même spectre d'hôte. Parallèlement leurs facteurs Nod, qui jouent un rôle déterminant dans la spécificité de nodulation, ont des structures similaires. Les facteurs Nod produits par les souches d'A. tortilis subsp. raddiana sont très proches des molécules produites par S. terangae by acaciae (LORQUIN et al., 1997 a) et Rhizobium tropici (POUPOT et al., 1993), qui présentent un spectre d'hôte analogue à celui des souches d'A. tortilis subsp. raddiana.

Cette convergence de différentes espèces bactériennes vers la nodulation des mêmes plantes via les mêmes facteurs Nod a déjà été observée pour les symbiontes de Sesbania (LORQUIN et al., 1997 b) et, dans une moindre mesure, pour ceux du soja (voir DÉNARIÉ et al., 1996). Ces résultats confirment que l'analyse des facteurs Nod pourrait être utilisée pour la caractérisation symbiotique des rhizobia, comme alternative aux tests de nodulation réalisés en laboratoire, ainsi que l'ont proposé LORTET et al. (1996). Cela pose par ailleurs la question plus générale de savoir comment ces bactéries ont traversé l'évolution : leurs propriétés de nodulation résultent-t-elles d'un transfert latéral des mêmes gènes nod chez des bactéries différentes ? ou bien de différents processus génétiques parallèles (mutations, délétions, insertions, etc...) qui, alliés à la pression de sélection de la plante pour le(s) facteur(s) Nod efficace(s), ont abouti à la synthèse des facteurs Nod adéquats ? De façon similaire à ce qui a été fait sur des souches

isolées d'Acacia senegal et de Prosopis chilensis (HAUKKA et al., 1998), l'étude de la séquence des gènes nod de ces rhizobia et de leur phylogénie pourrait permettre d'apporter des éléments de réponse à ces questions en mettant en évidence la similarité ou la divergence des gènes de nodulation des différents symbiontes d'A. tortilis subsp. raddiana.

Remerciements

Ce travail a été en partie financé par le Bureau des Ressources Génétiques, le programme Microbiologie AIP Inra, et par la CEE (contrats TS3*CT92-0047, TS3-CT93-0232 et TS3*-CT93-0220).

Auteurs

P. de Lajudie, B. Dreyfus, C. Boivin

Laboratoire des symbioses tropicales et méditerranéennes, UMR 1063 IRD-CIRAD-INRA-ENSAM, Campus de Baillarguet, TA 10/1, 34398 Montpellier Cedex, France

S. Bâ , A. N'Diaye, J. Lorquin, M. Neyra C. Detrez

Laboratoire de microbiologie des sols, IRD BP 1386, Dakar, Sénégal

A. Willems, M. Gillis

Laboratorium voor Microbiologie, Universiteit Gent, K.-L. Ledeganckstraat, 35, B-9000 Gent, Belgium

H. Jeder

IRA Gabès, Tunisie

J.-C. Promé

Institut de pharmacologie et de biologie structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France

Références bibliographiques

BÂS.,

1996 – L'analyse chromatographique des facteurs Nod comme nouvel outil de classification symbiotique des rhizobia; application à Sinorhizobium saheli, Rhizobium sp. et Bradyrhizobium sp. isolés d'acacias. DEA, univ. Cheikh Anta Diop, Dakar, 56 p.

BA S., WILLEMS A., LAJUDIE P. DE, ROCHE P., JEDER H., QUATRINI P., NEYRA M., FERRO M., PROMÉ J.-C., GILLIS M., BOIVIN-MASSON J.-C., LORQUIN J., 2002 – Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. System. Appl. Microbiol., 25: 130-145.

BOIVIN C., LORTET G., LORQUIN J., BA S., MEAR N., FERRO M., DE LAJUDIE P., PROMÉ J.-C., DREYFUS B., 1998 — « Utilisation des facteurs Nod pour la caractérisation symbiotique des rhizohiums: application aux souches

pour la caractérisation symbiotique des rhizobiums : application aux souches d'Acacia et de Sesbania du Sénégal ». In Campa C., Grignon C., Gueye M., Hamon S., éd. : L'acacia au Sénégal, Paris, IRD, coll. Colloques et séminaires : 377-386.

BREMNER J. M.,

1965 – « Total nitrogen ». In Black C.A., ed.: Methods of soil analysis, Wisconsin, American Society of Agronomy: 1149-1178.

CHEN W. X., LI G.S., QIY. L., WANG E. T., YUAN H. L., LI J. L.,

1991 – Rhizobium huakuii sp. nov. isolated from the root nodules of Astralagus sinicus. Int. J. Syst. Bacteriol., 41: 275-280.

DE LAJUDIE P., WILLEMS A., POT B., DEWETTINCK D., MAESTROJUAN G., NEYRA M., COLLINS M. D., DREYFUS B., KERSTERS K., GILLIS M.,

1994 — Polyphasic Taxonomy of Rhizobia: Emendation of the Genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., Sinorhizobium teranga sp. nov. Int. J. Syst. Bacteriol., 44: 715-733.

DE LAJUDIE P., LAURENT-FULELE E., WILLEMS A., TORCK U., COOPMAN R.G., COLLINS M. D., KERSTERS K., DREYFUS B., GILLIS M.,

1998 a — Allorhizobium undicola gen. nov. sp. nov. for nitrogen-fixing bacteria efficiently nodulating Neptunia natans in Senegal Int. J. Syst. Bacteriol. 48: 1277-1290.

DE LAJUDIE P., WILLEMS A.,
NICK G., MOREIRA F., MOLOUBA F.,
HOSTE B., TORCK U., NEYRA M.,
COLLINS M. D., LINDSTRÖM K.,
DREYFUS B., GILLIS M.,

1998 b – Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int. J. Syst. Bacteriol., 48: 369-382.

DÉNARIÉ J., DEBELLÉ F., PROMÉ J.-C.,

1996 – Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. *Ann Rev. Biochem.*, 65:503-535.

DREYFUS B. L., DOMMERGUES Y.,

1981 – Nodulation of *Acacia* species by fast- and slow-growing tropical strains of *Rhizobium*. *Appl. Environ. Microbiol.*, 41: 97-99.

DREYFUS B., GARCIA J. L., GILLIS M.,

1988 – Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stemnodulating nitrogen-fixing bacterium isolated from Sesbania rostrata.

Int. J. Syst. Bacteriol., 38: 89-98.

DUPUY N., WILLEMS A., POT B.,
DEWETTINCK D., VANDENBRUAENE I.,
MAESTROJUAN G., DREYFUS B. L.,
KERSTERS K., COLLINS M. D., GILLIS M.,
1994 – Phenotypic and genotypic
characterization of bradyrhizobia

1994 – Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree *Acacia albida*. *Int. J. Syst. Bacteriol.*, 44:461-473.

EARDLY B. D., MATERON L. A., SMITH N. H., JOHNSON D. A., RUMBAUGH M. D., SELANDER R. K.,

1990 – Genetic structure of natural populations of the nitrogen-fixing bacterium *Rhizobium meliloti*. Appl. Environ. Microbiol., 56: 187-194.

GIBSON A. H.,

1963 — Physical environment and symbiotic nitrogen fixation. I. The effect of temperature on recently nodulated Trifolium subterraneum L. plants.

Aust. J. Biol. Sci., 16: 1179-1188.

HARRIER L.A., WHITTY P.W., SUTHERLAND J. M., SPRENT J. I.,

1995 — « A comparison of nodulating and non-nodulating African species of Acacia using morphological and molecular markers ». In Tikhonovitch I. A., Provorov N. A., Romanov V. I., Newton W. E., eds: Nitrogen Fixation: Fundamentals and Applications, Dordrecht/Boston/London, Kluwer Academic Publishers: 483

HAUKKA K., LINDSTRÖM K., YOUNG J. P.W.,

1998 – Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and latin America. Appl. Environ. Microbiol., 64: 419-426.

JARVIS B. D. W., GILLIS M., DE LEY J.,

1986 – Intra- and intergeneric similarities between the ribosomal ribonucleic acid cistrons of *Rhizobium* and *Bradyrhizobium* species and some related bacteria.

Int. J. Syst. Bacteriol., 36: 129-138.

JARVIS B. D.W., VAN BERKUM P., CHEN W. X., NOUR S. M., FERNANDEZ M. P., CLEYET-MAREL J.-C., GILLIS M..

1997 – Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol., 47: 895-898.

JORDAN D. C.,

1982 – Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol., 32: 136-139.

LEROUGE P., ROCHE P., FAUCHER C., MAILLET F., TRUCHET G., PROMÉ J.-C., DÉNARIÉ J.,

1990 – Symbiotic host specificity of *Rhizobium meliloti* is determined by a sulphated and acylated glucosamine oligosaccharide signal.

Nature, 344: 781-784.

LORQUIN J., LORTET G., FERRO M., MEAR N., PROMÉ J.C., BOIVIN C.,

1997 a — Sinorhizobium teranga bv. acaciae and Rhizobium sp. ORS1001, two taxonomically distantly related Acacia-nodulating strains, produce similar Nod factors that are O-carbamoylated, N-methylated and mainly sulfated. J. Bacteriol., 179: 3079-3083.

LORQUIN J., LORTET G., FERRO M., MEAR N., DREYFUS B., PROMÉ J.-C., BOIVIN C.,

1997 b.- Nod factors from Sinorhizobium saheli and S. teranga by sesbaniae are both arabinosylated and fucosylated, a structural feature specific

to Sesbania rostrata symbionts.

Mol. Plant Microbe Interact., 10, 879-890.

LORTET G., MEAR N., LORQUIN J., DREYFUS B., DE LAJUDIE P., ROSENBERG C., BOIVIN C.,

1996 – Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga and Rhizobium sp strains isolated from Acacia and Sesbania. Mol. Plant Microbe Interact, 9:736-747.

MARTINEZ-ROMERO E., SEGOVIA L., MERCANTE F. M., FRANCO A. A., GRAHAM P., PARDO M.A.,

1991 – Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees.

Int. J. Syst. Bacteriol., 41: 417-426.

MOREIRA F. M. S., GILLIS M., POT B., KERSTERS K., FRANCO A. A.,

1993 – Characterization of rhizobia isolated from different divergence groups of tropical *Leguminosae* by comparative polyacrylamide gel electrophoresis of their total proteins.

System. Appl. Microbiol., 16: 135-146.

N'DIAYE A.,

1996 – Diversité et fixation d'azote des rhizobiums d'Acacia. DEA, univ. Cheikh Anta Diop, Dakar, 43 p.

NICK G., JARVIS B. D.W., TIGHE S.W., NIEMI M., DE LAJUDIE P., LINDSTRÖM K.,

1995 – « Taxonomy of rhizobia isolated from the root nodules of leguminous trees in the Sudan ». In Tikhonovitch I.A., Provorov N.A., Romanov V. I., Newton W. E., eds.: Nitrogen Fixation: Fundamentals and Applications, Dordrecht/Boston/London, Kluwer Academic Publishers: 715.

NICK G., DE LAJUDIE P., EARDLY B. D., SUOMALAINEN S., PAULIN L., ZHANG X., GILLIS M., LINDSTRÖM K.,

1999 – Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int. J Syst. Bacteriol., 49: 1359-1368.

NOUR S. M., FERNANDEZ M. P., NORMAND P., CLEYET-MAREL J.-C.,

1994 – Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol., 44: 511-522.

NOUR S. M., CLEYET-MAREL J.-C., NORMAND P., FERNANDEZ M. P.,

1995 – Genomic heterogeneity of strains nodulating chickpeas (*Cicer arietinum* L.) and description of *Rhizobium mediterraneum*, sp. nov. *Int. J. Syst. Bacteriol.*, 45: 640-648.

POUPOT R., MARTINEZ-ROMERO E., PROMÉ J. C.,

1993 — Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucosaminyl terminus. Biochemistry, 32:10430-10435.

PRICE N. P. J., RELIC B., TALMONT F., LEWIN A., PROME D., PUEPPKE S. G., MAILLET F., DÉNARIÉ J., PROMÉ J.-C., BROUGHTON W. J.,

1992 – Broad-host-range *Rhizobium* species strain NGR 234 secretes a family of carbamoylated and fucosylated nodulation signals that are O-acetylated or sulphated. *Mol. Microbiol.*, 6: 3575-3584.

RAINEY F.A., WIEGEL J.,

1996 – 16S ribosomal DNA sequence analysis confirms the close relationship between the genera *Xanthobacter*, *Azorhizobium* and *Aquabacter* and reveals a lack of phylogenetic coherence among *Xanthobacter* species.

Int. J. Syst. Bacteriol., 46: 607-610.

RINAUDO G., ORENGA S., FERNANDEZ M. P., MEUGNIER H., BARDIN R.,

1991 – DNA homologies among members of the genus Azorhizobium and other stem- and root-nodulating bacteria isolated from the tropical legume Sesbania rostrata.

Int. J. Syst. Bacteriol., 41:114-120.

SEGOVIA L., YOUNG J. P.W., MARTINEZ-ROMERO E.,

1993 – Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol., 43: 374-377.

SPAINK H. P.,

1996 – Regulation of plant morphogenesis by lipo-chitin oligosaccharides. *Crit. Rev. Plant Sci.*, 15: 559-582.

TRINICK M. J.,

1965 – Medicago sativa nodulation with Leucaena leucocephala root-nodule bacteria.

Aust J. Sci., 27: 263-264.

TRINICK M. J.,

1968 – Nodulation of tropical legumes. I Specificity in the Rhizobium symbiosis of Leucaena leucocephala. Exp. Agric., 4: 243-253.

TRINICK M. J.,

1980 – Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups.

J. Appl. Bacteriol., 49: 39-53.

TRÜPER H. G., DE CLARI L.,

1997 – Taxonomic note: necessary correction of specific epithets formed as substantives (nouns) in « apposition ». *Int. J. Syst. Bacteriol.*, 47: 908-909.

Un arbre au désert, Acacia raddiana

VANDAMME P., POT B., GILLIS M., DE VOS P., KERSTERS K., SWINGS J.,

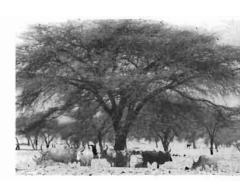
1996 – Polyphasic taxonomy, a consensus approach to bacterial systematics. *Microbiol. Rev.*, 60: 407-438.

WILLEMS A., COLLINS M. D.,

1993.– Phylogenetic analysis of *rhizobia* and *agrobacteria* based on 16S ribosomal DNA sequences.

Int. J. Syst. Bacteriol., 43: 305-313.

WILLIAMS J. G. K., KUBELIC A. R., LIVAK K. J., RAFALSKI J. A., TINGEY S.V.,


1990 – DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.

YOUNG J. P.W., HAUKKA K. E.,

1996 – Diversity and phylogeny of rhizobia. New Phytol., 133:87-94.

Phénologie de la nodulation d'Acacia raddiana en milieu naturel

M. DIOUF M. NEYRA M. GROUZIS

Résumé

L'association d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan avec les bactéries du sol à croissance rapide de la famille des rhizobiacées joue un rôle important dans l'amélioration de la nutrition minérale de cette plante. Cependant, les caractéristiques de cette symbiose ont été très peu étudiées en conditions naturelles. Ce travail a été conduit au Sénégal sur des peuplements naturels d'Acacia raddiana de deux sites du Ferlo sénégalais : Souilène et Dahra-Djoloff. La répartition dans l'espace et les variations saisonnières des nodules présents sur le système racinaire de surface d'Acacia raddiana (0-1 m) ont été étudiées en relation avec les conditions hydriques du sol. À cet effet, des prélèvements de sol et des extractions ont été effectués à différentes périodes de l'année. Le maximum de nodules a été rencontré entre 2 et 3 mètres du tronc, et à une profondeur comprise entre 25 et 75 cm. Une biomasse importante de nodules apparemment très fixateurs d'azote a été produite pendant la saison pluvieuse. Ces nodules ont une durée de vie courte, et apparaissent desséchés pendant la majeure partie de l'année. La densité des nodules apparaît corrélée à la biomasse racinaire, mais également à l'humidité du sol de la rhizosphère.

Mots-clés:

NODULATION, RACINE, PEUPLEMENT NATUREL, STOCK HYDRIQUE, ACACIA TORTILIS (FORSSK.) HAYNE SUBSP. RADDIANA (SAVI) BRENAN.

Abstract

The association between Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan and soil bacteria with rapid growth belonging to the Family Rhizobiaceae plays an important role in the improvement of the mineral nutrition of this plant. However, the characteristics of this symbiotic relationship have been very little studied under natural conditions. This work has been conducted in Senegalese natural populations of Acacia raddiana in two sites: Souilène and Dahra-Djoloff (Ferlo). The spatial distribution around tree and the seasonal variations of nodules present on the root system of Acacia raddiana (0-1 m) were studied under different soil moisture conditions. For that, extraction of soil samples was made at the different periods of the year. The maximum number of nodules was obtained between 2 and 3 m far from the tree trunk, and between 25 and 75 cm soil depth. A significant nodule biomass apparently more efficient in N fixation was obtained during the rainy season. These nodules have short life span, and appeared dried during the greater part of the year. The density of the nodules correlated significantly with the root biomass, and also with the soil moisture content of the rhizosphere.

Keywords:

NODULATION, ROOT, NATURAL POPULATION, SOIL WATER BUDGET, ACACIA TORTILIS (FORSSK.) HAYNE SUBSP, RADDIANA (SAVI) BRENAN.

Introduction

L'association d'Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan avec les bactéries du sol à croissance rapide de la famille des rhizobiacées joue un rôle important dans l'amélioration de la nutrition minérale de cet arbre. Cependant, les caractéristiques de cette association ont été très peu étudiées in natura. Ce travail, conduit au Sénégal, se propose d'apporter des connaissances sur le fonctionnement de cette symbiose dans les conditions naturelles. Il précise notamment la répartition dans l'espace et dans le temps des nodules présents sur le système racinaire de surface d'Acacia raddiana et essaie de caractériser leur déterminisme.

L'étude a été conduite sur des peuplements naturels au niveau de deux sites du Ferlo: Souilène et Dahra. Nous avons, d'une part, estimé la densité de nodules en fonction de la distance au tronc et, d'autre part, suivi l'évolution de cette densité de nodules au cours de l'année dans la zone de densité maximale. Des travaux antérieurs ayant montré que 80 à 90 % de la biomasse racinaire de surface de ces arbres dans le Ferlo se situaient dans le premier mètre (GROUZIS et AKPO, 1997), l'étude a été limitée à cette zone d'enracinement superficielle.

Matériel et méthodes

Sites d'étude

La station de Souilène (16° 21' N et 15° 26' W), avec une pluviométrie moyenne annuelle de 282,4 mm (1920-1991), est comprise entre les isohyètes 200 et 400 mm et appartient à la zone sahélienne au sens strict (DIOUF, 1996). Elle est située dans la région du Fleuve, sur un sol brun-rouge faiblement évolué sur sables siliceux, et présente des peuplements d'Acacia raddiana âgés (~ 30 ans) et denses (~ 45 individus.ha⁻¹).

Le site de Dahra (15° 21' N et 15° 26'W) se situe au sein du Centre de recherches zootechniques de l'ISRA, dans la région de Louga, sur un sol brun-rouge (DIOUF, 1996). Avec une pluviométrie annuelle moyenne de 445 mm (1933-1994), Dahra appartient à la zone soudano-sahélienne. Dans cette station, les peuplements sont plus jeunes et plus denses (~ 60 individus.ha⁻¹), et présentent une régénération naturelle.

Prélèvement et échantillonnage

Les prélèvements ont été effectués à l'aide d'un carottier métallique de 6,45 cm de diamètre intérieur moyen, enfoncé à l'aide d'une masse (SCHURMAN et GŒDEWAGEN, 1971). La colonne de sol ainsi prélevée a été sectionnée en 4 segments de 25 cm, permettant de différencier 4 niveaux (0-25, 25-50, 50-75, et 75–100 cm).

La localisation des nodules a été étudiée à Souilène en octobre 1993 sur un arbre adulte d'une hauteur de 5 m environ et présentant un tronc d'un diamètre moyen de 20 à 25 cm. Des prélèvements ont été effectués tous les mètres entre 1 m et 8 m du tronc, avec trois répétitions constituées par trois lignes parallèles de prélèvement espacées de 20 cm les unes des autres.

Les variations saisonnières de la densité de nodules ont été suivies dans la station de Dahra entre le 22 juin 1993 et le 26 janvier 1994, de façon à englober toute la saison de végétation. L'échantillonnage a été réalisé sur quatre arbres de taille voisine (hauteur moyenne : 5 m, diamètre moyen : 22 cm) répartis dans un groupement à *Acacia raddiana* et *Balanites aegyptiaca*. Pour chacun des arbres, un prélèvement a été effectué au niveau de chaque point cardinal, en décalant de 20 cm les points à chaque date de prélèvement. À chaque date, 16 prélèvements ont donc été effectués pour chaque profondeur.

Traitement des échantillons de sol

Le volume de chaque échantillon de sol rapporté au laboratoire a été mesuré à l'aide d'une éprouvette graduée de 2 litres dans laquelle les échantillons ont été mis à décanter. Le volume théorique de chaque carotte est de 814 cm³, mais en raison d'obstacles tels que le tassement (sol humidifié par la pluie ou par l'arrosage pratiqué la veille du prélèvement en saison sèche pour faciliter la pénétration du

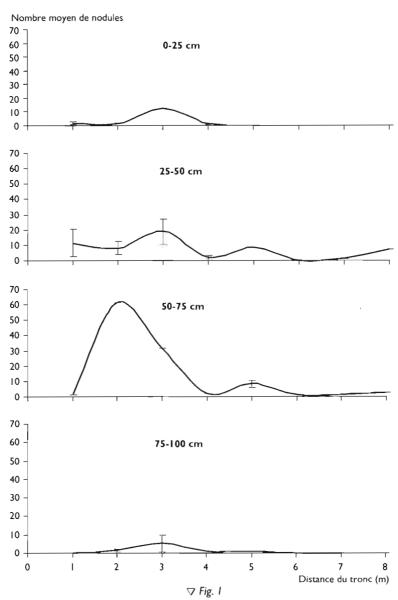
carottier) et les pertes (lors de la récupération des carottes), ce volume est tantôt sous-estimé, tantôt surestimé. Le volume réel ainsi mesuré, rapporté à 1 000 cm³, a été pris en considération pour les calculs.

Les échantillons de sol ont ensuite été triés à l'aide d'un tamis de I mm de diamètre de pores, permettant de séparer les racines et les nodules des gros débris et des grains de sables. Les échantillons séparés des impuretés ont été mis dans de petits bacs contenant de l'eau puis triés sous la loupe, afin d'éliminer les sables fins et les racines fines des herbacées, et de séparer les nodules des racines. Les racines de la plante ont été extraites. Elles se distinguent de celles des herbacées par leur couleur rousse et leur odeur piquante. Après ce tri, les nodules ont été dénombrés, et les poids des racines et des nodules ont été relevés après séchage à l'étuve à 85 °C jusqu'à poids constant (48 h). Les résultats sont exprimés en milligrammes de racines et de nodules par décimètre carré de sol (mg.dm-²).

L'activité nitrogénasique a été mise en évidence par la mesure de l'activité réductrice d'acétylène (HARDY et al., 1973). Des nodules fraîchement récoltés ont été incubés in situ dans des tubes hermétiques en présence de 10 % (v/v) d'acétylène. Après une demi-heure, une partie de l'atmosphère du tube a été prélevée, et transportée au laboratoire pour dosage par chromatographie gazeuse de l'éthylène produit.

Phénologie de la plante et bilan hydrique du sol

La phénologie des individus observés a été étudiée suivant la méthodologie décrite par Diouf et Zaafouri (cet ouvrage)¹ et le stock hydrique du sol a été évalué par l'humidimètre neutronique (Pontanier et al., cet ouvrage)².


Résultats

Répartition des nodules en fonction de la distance du tronc et de la profondeur du sol

La figure I donne la répartition des nodules en fonction de la profondeur et de la distance du tronc pour l'arbre étudié à Souilène. À partir des analyses de variance ANOVA réalisées, le tableau I montre une densité maximale de nodules dans la zone comprise entre 2 et 3 mètres du tronc (F 95/7 = 4,3***), et à une profondeur comprise entre 25 et 75 cm (F95/3 = 4,2**) (tabl. II).

 [«] Phénologie comparée d'Acacia raddiana au nord et au sud du Sahara ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003: 103-118.

 [«] Écologie et régime hydrique de deux formations à Acacia raddiana au nord et au sud du Sahara (Tunisie, Sénégal) ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003 : 79-102.

Répartition des nodules en fonction de la profondeur et de la distance du tronc d'un Acacia raddiana à Souilène.

Les variations des biomasses nodulaire et racinaire en fonction de la profondeur à Dahra ont été caractérisées pour quatre dates: 03/08, 09/09, 08/10 et 27/11/1993. Les résultats de l'analyse de variance à deux facteurs (date et profondeur) sur la biomasse nodulaire (F 255/3 = 20,13 ***) et sur la biomasse racinaire (F 255/3 = 118,65 ***) sont hautement significatifs (p = 0,01). Les résultats du test de Newman-Keuls (tabl. III) montrent que les biomasses nodulaires

√ Tableau I – Variation de la densité de nodules en fonction de la distance du tronc
d'Acacia raddiana à Souilène.

Distance du tronc (m)	1	2	3	4	5	6	7	8
Densité de nodules (nombre de nodules par échantillon de I 000 ml)	3,23 b	8,32 ab	11,18 a	0,79 Ь	2,28 b	0,09 Ь	0,29 Ь	0,96 b

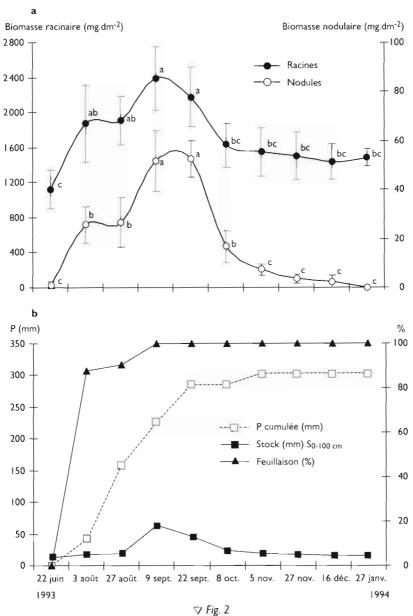
Les valeurs repérées par des mêmes lettres appartiennent à un groupe homogène (test de Newman-Keuls, p = 0,05).

▼ Tableau II – Variation de la densité de nodules en fonction de la profondeur à Souilène.

Profondeur (cm)	0-25	25-50	50-75	75-100
Densité de nodules (nombre de nodules par échantillon de 1 000 mi)	0,83 Ь	5,48 ab	6,28 a	0,98 Ь

Les valeurs repérées par des mêmes lettres appartiennent à un groupe homogène (test de Newman-Keuls, p=0.05).

des niveaux 25-50 cm et 50-75 cm sont significativement plus élevées que celles des horizons 0-25 cm et 75-100 cm. Le maximum de nodules se situent dans l'horizon 50-75 cm. La biomasse racinaire présente des valeurs significativement distinctes et décroissantes de 0-25 cm à l'horizon 75-100 cm (tabl. III).

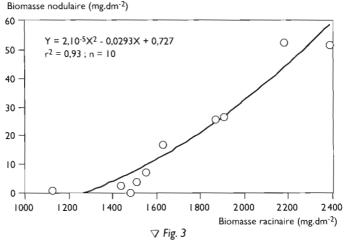

√ Tableau III – Valeurs moyennes des biomasses nodulaire et racinaire en fonction de la profondeur à Dahra.

Profondeur (cm)	Biomasse nodulaire (mg.dm ⁻²)	Biomasse racinaire (mg.dm ⁻²)
0-25	5,0 b	990,6 a
25-50	8,2 a	792,4 b
50-75	9,9 a	215,9 с
75-100	1,4 b	97,5 d

Les valeurs repérées par des mêmes lettres appartiennent à un groupe homogène (test de Newman-Keuls, p=0.05).

Variation saisonnière de la biomasse de nodules

La figure 2 donne l'évolution au cours du temps de la biomasse nodulaire et de la biomasse racinaire sur un mètre de sol à Dahra en relation avec le stock hydrique, la phénologie de la plante (phase de feuillaison) et les précipitations. Une analyse de variance effectuée sur les biomasses nodulaire (F 159/9 = 36,77 ***) et racinaire (F 159/9 = 6,63 ***) nous a permis de mettre en évidence des différences significatives (p = 0,01). Le test de Newman-Keuls,


Évolution temporelle de la biomasse nodulaire et de la biomasse racinaire (a) en relation avec le stock hydrique du sol dans l'horizon (0-100 cm), la phase de feuillaison de l'arbre et les précipitations (b) à Dahra. Sur la figure 2 a, les moyennes repérées par une même lettre appartiennent à un groupe homogène (test de Newman-Keuls, p = 0,01).

appliqué aux moyennes, permet de distinguer des groupes homogènes (lettres associées aux courbes de la figure 2a).

En fin de saison sèche (fin juin), on observe la présence de quelques nodules secs, certainement vestiges de la saison des pluies précédente. Les valeurs maximales des biomasses des nodules et des racines sont obtenues le 30 septembre 1993 (fig. 2 a). Cette date correspond au maximum de stock hydrique du sol sur 1 m (soit 64,1 mm) et à la pleine feuillaison (100 %) des individus suivis (fig. 2 b). D'autre part, elle coïncide avec une période pendant laquelle 75 % de la hauteur annuelle de pluie est déjà tombé (fig. 2 b). Les nodules observés semblent très actifs. Ils présentent en effet une couleur interne rouge, caractéristique de la présence de léghémoglobine indispensable pour la fixation d'azote, et surtout la présence de la nitrogénase est indiquée par une forte activité réductrice d'acétylène. Cependant, ces nodules ont une durée de vie apparemment courte, puisque dès le mois d'octobre ils commencent à se dessécher.

Variation de la biomasse des nodules en fonction de la densité racinaire

La présence de nodules n'est pas uniforme et apparaît, de façon logique, nettement liée à la présence de racines. En effet, l'analyse des paramètres sur I m de sol montre qu'il existe globalement une bonne corrélation entre la biomasse de nodules et la biomasse de racines (fig. 3). Cependant, l'analyse strate par strate montre que cette corrélation peut être modulée par l'effet d'autres facteurs, humidité du sol notamment. Dans l'horizon le plus superficiel (0-25 cm), on observe ainsi très peu de nodules pour une quantité maximale de racines. Cette rareté des nodules dans cet horizon peut s'expliquer par des contraintes plus fortes à ce niveau (évaporation et absorption racinaire intenses) d'une part, et par l'excès possible de nitrates provenant de la décomposition de la litière d'autre part. Par contre, le peu de nodules observés dans l'horizon inférieur

Relation entre biomasse nodulaire et biomasse racinaire chez Acacia raddiana sur un mètre de profondeur à Darha.

75-100 cm, alors que l'humidité du sol est optimale mais que la densité racinaire est la plus faible, confirme que cette dernière est le facteur déterminant de la nodulation.

Discussion

Il existe deux voies principales pour l'alimentation des légumineuses en azote : l'assimilation du nitrate du sol absorbé par les racines et la fixation biologique de l'azote. Ces deux voies peuvent être complémentaires ou concurrentes, suivant les conditions du milieu et les stades physiologiques de la plante. Une nodulation abondante et active représente donc un atout pour la croissance du végétal. Or, les légumineuses arborescentes adultes étaient réputées ne pas noduler en milieu naturel, dans les conditions habituellement rencontrées dans les zones arides et semi-arides. De nombreux nodules ont été observés par DUPUY et DREYFUS (1992) sur Acacia albida, mais dans des conditions d'humidité optimales, en présence d'une nappe phréatique peu profonde. De même, des populations importantes de bactéries fixatrices d'azote atmosphérique du genre Bradyrhizobium associées à Acacia albida ont été observées par Dupuy et Dreyfus (1992) à 34 m de profondeur d'un sol du nord du Sénégal (Région de Louga), sans toutefois que ces auteurs aient pu mettre en évidence de nodules à cette profondeur. Nos observations montrent pour la première fois que la nodulation d'Acacia raddiana peut être importante en milieu naturel : bien qu'il soit difficile d'extrapoler à l'arbre entier les données obtenues, on peut estimer à plus de 100 000 le nombre de nodules présents sur les racines de surface (1 m de profondeur), dans une zone de 8 m autour de l'arbre.

La présence de nodules actifs n'est pas constante au cours de l'année. Une nodulation pérenne constituerait cependant un avantage certain pour la plante, puisque la fixation de l'azote atmosphérique pourrait redémarrer dès que les conditions du milieu redeviennent favorables. Cependant, les nodules secs rencontrés avant les premières pluies (22 juin 1993) présentent un tel état de nécrose qu'il semble difficile d'envisager une nodulation pérenne chez cette plante, au moins pour les nodules du système racinaire de surface.

La grande sensibilité de la nodulation et de la fixation biologique de l'azote aux facteurs environnementaux est bien connue, pour les arbres notamment (HABISH, 1970; SPRENT, 1984). Les facteurs capables de limiter ou d'inhiber la nodulation et la fixation biologique de l'azote sont généralement les mêmes que ceux qui affectent la croissance végétale, même si les seuils peuvent différer sensiblement (HABISH, 1970; OBATON, 1992). Parmi ces facteurs, le déficit hydrique du sol et les minéraux, notamment l'azote et le phosphore du sol (DOMMERGUES et al., 1984; SPRENT, 1984; OBATON, 1992), sont déterminants.

Pendant les périodes de présence de nodules effectifs (août/octobre), l'humidité volumique de la strate 0-100 cm du sol a varié de 4 à 11 % avec un maximum de nodules à 11 %. Cette gamme s'insère dans celle de 7,5 à 15 % dégagée par HABISH (1970) pour une nodulation optimale à 15 %, dans des conditions écologiques similaires. Cet auteur a montré qu'à 7,5 % d'humidité, les nodules sont confinés dans les horizons superficiels du système racinaire au niveau où la teneur en eau du sol est plus élevée que dans les horizons profonds, ce qui permet la formation de nodules. En saison sèche, période pendant laquelle l'humidité du sol est le plus souvent inférieure à celle du point de flétrissement permanent. la densité de nodules est très faible, voire nulle. Le faible potentiel fixateur des légumineuses dans les sols tropicaux s'expliquerait par les déficits hydriques (CORBY, 1980; HABISH, 1970; DANSO et al., 1992). Un déficit hydrique, même faible, réduit fortement l'activité nitrogénasique des nodules - et donc la fixation d'azote - puisqu'ils sont souvent situés dans les horizons superficiels du sol soumis à une dessiccation rapide (OBATON, 1992). Cette baisse de l'activité fixatrice est due à la fois à une diminution de l'alimentation des nodosités en oxygène et à un ralentissement du transport des photosynthétats vers ces nodosités. Le déficit hydrique, dans les horizons de surface, affecte effectivement l'activité fixatrice d'azote d'Acacia raddiana (MUTHANA et ARORA, 1980).

L'excès d'azote dans le sol réduit également la fixation biologique de cet élément (HÖGBERG, 1986), par différents mécanismes (opposition à la pénétration des rhizobia dans le poil absorbant, interruption du développement des nodosités déjà formées, entrave aux mécanismes biochimiques de fixation de l'azote dans les nodosités déjà actives). Suite à la chute des feuilles, caractéristique des caducifoliées des zones semi-arides, et à la décomposition de la litière, les premières pluies provoquent un *flush* de nitrification. Les sols sont alors soumis à un excès temporaire de nitrate susceptible de perturber la nodulation et pouvant expliquer à la fois la faible biomasse nodulaire observée en début de saison humide et la faible densité de nodules dans l'horizon de surface (0-25 cm).

L'étude de l'évolution temporelle de la nodulation d'Acacia raddiana en conditions naturelles à Dahra nous a permis de constater que celle-ci atteint son maximum en pleine saison des pluies alors que le sol a reçu au moins 75 % de la pluviométrie annuelle (soit 187,5 mm). La zone préférentielle de formation des nodosités se situe sous le couvert de cette plante (entre 2 et 3 m du tronc) et entre 25 et 75 cm de profondeur. Il est surtout important de retenir que l'humidité du sol et la quantité de racines fines déterminent ensemble cette nodulation. Les mesures d'activité réductrice d'acétylène montrant la forte activité nitrogénasique de ces nodules, on peut estimer que l'apport de la fixation d'azote à la nutrition azotée d'Acacia raddiana n'est pas négligeable, au moins à certaines périodes de l'année. Le pouvoir fixateur d'azote élevé d'Acacia raddiana, montré par NDOYE et al. (1995) fait que la nodulation observée en saison des pluies devrait favoriser la constitution d'une réserve azotée, malgré les nombreux facteurs limitant fréquemment la fixation d'azote en milieu sahélien. Ainsi, cette plante pourrait contribuer à améliorer le niveau de fertilité du sol, donc la qualité des herbages dans cette zone à vocation pastorale.

Auteurs

M. Diouf CERAAS, BP 3320, Thiès Escale, Sénégal

M. Neyra IRD, BP 1386, Dakar, Sénégal M. Grouzis IRD, BP 434, 101 Antananarivo, Madagascar

Références bibliographiques

CORBY H. D. L.,

1980 – The incidence of rhizobial nodulation among legumes dominant in the Flora Zambesiaca area of Africa. *Kirkia*, 13: 365-375.

Danso S. K. A., Bowen G. D., Sanginga N.,

1992 – Biological nitrogen fixation in trees in agrosystems. *Plant Soil*, 141:177-196.

DIOUF M.,

1996 – Étude du fonctionnement hydrique et des réponses à l'aridité des ligneux sahéliens. Cas de Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan en zone soudano-sahélienne du Sénégal. Thèse doct., univ. C. A. Diop, 172 p.

DOMMERGUES Y. R., DIEM H. G., GAUTHIER D. L., DREYFUS B., CORNET F.,

1984 — « Nitrogen-fixing trees in the tropics: potentialities and limitations ». In Veeger C., Newton W. E., eds: Advances in nitrogen fixation research, Wageningen, Martinus Nijhohh/Dr W. Junk, Den Haag and PUDOC: 7-13.

DUPUY N. C., DREYFUS B. L.,

1992 – Bradyrhizobium populations occur in deep soil under leguminous tree Acacia albida. Appl. Environment. Microbiol., 58: 2415-2419.

GROUZIS M., AKPO L. E.,

1997 – Influence of tree cover on herbaceous above- and below-ground phytomass in the Sahelian zone of Senegal. J. Arid. Environ., 35: 285-296.

HABISH H.A.,

1970 – Effect of certain soil conditions on nodulation of *Acacia* spp. *Plant Soil*, 33:1-6.

HARDY R.W.F., BURNS R. C., HOLSTEN R. D.,

1973 – Application of the acetylene-ethylene assay for measurement of N_2 -fixation. Soil Biol. Biochem., 5: 47-81.

HÖGBERG P.,

1986 – Nitrogen fixation and nutrients relations in savana woodland stress (Tanzania). J. Appl. Ecol., 23: 675-688.

MUTHANA K. D., ARORA G. D.,

1980 – Acacia tortilis (Forssk): a promising fast-growing tree for India arid zones.
Central Arid Zone Research Institute,
Technical Bulletin, n° 5, 19 p.

NDOYE I., GUEYE M., DANSO S. K.A., DREYFUS B.,

1995 – Nitrogen fixation in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil, 172: 175-180.

Un arbre au désert, Acacia raddiana

OBATON M.,

1992 – « Facteurs pédoclimatiques limitant la fixation biologique de l'azote chez les légumineuses ». In Mulongoy K., Gueye M., Spencer D. S. C., eds: Biological Nitrogen Fixation and Sustainability of Tropical Agriculture, IITA: 57-76.

SCHURMAN J. J., GOEDEWAGEN M. A. J.,

1971 – Methods for the examination of root systems and roots. Wageningen, Centre for Agric. Publ. Doc, 86 p.

SPRENT J. I.,

1984 — « Environmental effects on nodulated plants ». In Veeger C., Newton W. E., eds: Advances in Nitrogen Fixation Research, Den Haag - Boston -Lancaster, Nijhoff-Junk-Pudoc Publishers, 531 p.

Réponses adaptatives des isolats de Rhizobium aux stress

I. CACCIARI,
E. DI MATTIA,
P. QUATRINI,
M. C. MOSCATELLI,
S. GREGO,
D. LIPPI,
M. R. DE PAOLIS

Résumé

Généralement, les souches tropicales de rhizobia possèdent des propriétés physiologiques leur permettant de se développer dans les milieux arides et semi-arides. Les principaux facteurs limitant l'activité biologique dans les sols sont le déficit hydrique, la salinité, les températures élevées, les pH extrêmes et les carences en éléments nutritionnels. Les interactions fréquentes entre ces différentes contraintes affectent la croissance et la capacité de survie des micro-organismes dans les sols arides.

Les résistances à certains de ces facteurs (hautes températures, salinité, stress hydrique) de nombreuses souches de rhizobia isolées de sols sahéliens sénégalais et tunisiens ont été étudiées. Nos résultats montrent que : (1) les souches sont capables de se multiplier à 40 °C et même à 45 °C pour cinq d'entre elles ; (2) les souches des sols sénégalais tolèrent des concentrations en sel supérieures à 2 %, alors que celles des sols de Tunisie sont inhibées à des concentrations de 1 % ; (3) toutes les souches tolèrent plus le stress osmotique que le stress salin.

Une souche d'une espèce de rhizobium tolérante au sel a été retenue comme modèle pour évaluer les capacités de développement en conditions de déficit nutritionnel et salines élevées, conditions qui prévalent généralement en milieu aride. La souche étudiée s'est avérée résistante à une carence nutritionnelle pendant de longues périodes, surtout si elle a été préalablement adaptée à des

Un arbre au désert, Acacia raddiana

conditions salines, tout en conservant des capacités de développement lorsque les nutriments devenaient disponibles. Cette souche peut être utilisée dans l'inoculation des sols arides dans les opérations de réhabilitation.

Mots-clés:

isolat, *rhizobium*, adaptation, stress hydrique, stress salin, oligotrophie, sénégal tunisie.

Abstract

It is generally recognized that tropical strains of rhizobia exhibit physiological characteristic that enable them to survive to typical arid and semi-arid soil environmental constraints. The most important factors limiting the growth and activity of rhizobia in soils are drought, salinity, high temperatures, pH and nutrient deprivation. In arid soils, some of these constraints often interact severely affecting the survival of rhizobia.

Numerous strains of rhizobia isolated from different soils of Sahel in Senegal and Tunisia have been tested for their resistance to high temperatures, to salinity and to osmotic pressure. Our results have shown that: (1) the strains were able to grow at 40 °C and five of them at 45 °C; (2) the strains from Senegalese soils tolerated salt concentrations up to 2 % while those from Tunisian soils were inhibited at 1 %; (3) both Senegalese and Tunisian strains were more tolerant to osmotic stress than to salinity.

A salt-tolerant Rhizobium sp. strain was chosen as a « model of study » for evaluating the capacity to survive under conditions of nutrient starvation and high salt concentrations. Dry and saline arid soils are generally low in nutrients so that inoculant strains of root-nodule bacteria have to cope with both high salt and low nutrient conditions. Therefore, a successful inoculation of selected rhizobia in soils requires that the microorganisms can adapt themselves to very slow or no growth at all and to sudden stressful change in the environmental conditions.

The strain examined can withstand nutrient deprivations for long periods, especially when it is previously adapted to saline conditions, while retaining the capacity for active metabolism, if nutrients become available. This might indicate the potential for a long persistence in soil and for a rapid regrowth in the rhizosphere of an appropriate host and hence for its utilization as inoculant in revegetation strategies for arid and saline soils.

Keywords:

STRAINS, RHIZOBIUM, ADAPTATION, DROUGHT, SALINITY, HIGH TEMPERATURES,
OLIGOTROPHIC CONDITIONS. SENEGAL TUNISIA.

Introduction

Les milieux extrêmes sont, fréquemment, caractérisés par des écosystèmes stables marqués par la présence d'au moins un facteur aux limites de la tolérance pour la plupart des organismes. Par contre, la majorité des milieux terrestres et aquatiques comportent des écosystèmes fluctuants présentant une grande variabilité des facteurs chimiques et physiques.

On considère que les écosystèmes stables sélectionnent des organismes à spectres étroits de tolérance (ALEXANDER, 1971), alors que les espèces des écosystèmes fluctuants sont elles capables de s'adapter aux changements continus soit des teneurs en éléments nutritifs, soit des conditions physiques.

Les sols tropicaux, parfois les milieux les plus productifs du monde, peuvent également devenir les lieux les plus défavorables à la vie des micro-organismes. Les principaux facteurs limitant l'activité biologique dans les sols tropicaux sont la sécheresse, la salinité, les hautes températures, les pH extrêmes acides ou alcalins et les carences en éléments nutritifs (HENZELL, 1988). Ces sols sont souvent influencés par de nombreux facteurs interagissants (SKUJINS, 1984) susceptibles de réduire la croissance et la capacité de survie des organismes (SAXENA et REWARI, 1992). Aux facteurs abiotiques, il faut encore ajouter les facteurs biotiques négatifs comme la compétition, la prédation, etc.

Dans de tels habitats, la capacité de survie d'une souche bactérienne dépend de sa capacité à croître à un taux suffisant pour compenser la mort causée par les facteurs précédemment recensés (HENZELL, 1988).

En ce qui concerne la symbiose légumineuses-bactéries du genre *Rhizobium*, le facteur susceptible d'entraver la fixation d'azote n'est généralement pas l'absence de souches bactériennes efficientes, mais un ou plusieurs facteurs écologiques qui en limitent les potentialités (ALEXANDER, 1985). Les divers stress biotiques et abiotiques peuvent agir à différents niveaux et réduire le taux de croissance ainsi que la capacité de survie des rhizobia à l'état saprophytique (en absence de la plante hôte). Ces stress peuvent interférer avec les processus d'infection ou de nodulation, ou encore influencer l'activité fixatrice d'azote après établissement de la symbiose (HIRSCH, 1996).

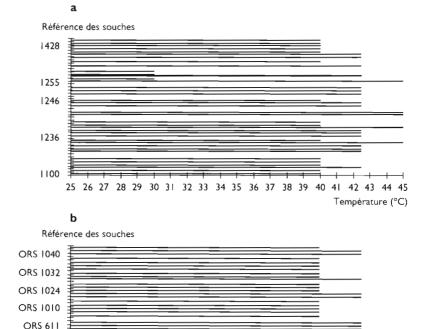
Le recours à des légumineuses pérennes peut se révéler être une stratégie intéressante pour la réhabilitation des zones tropicales et sub-tropicales affectées par les processus de désertification ayant provoqué la perte de fertilité (HERRERA et al., 1993 ; GILLER et CADISH, 1995 ; DANSO et al.,1992 ; DIAGNE, 1988). Les légumineuses infestées avec des souches effectives de rhizobia peuvent en effet garantir un rendement plus élevé et une amélioration du bilan azoté de ces sols appauvris (DREYFUS et DOMMERGUES, 1981; NDOYE et al., 1995 ; CORNET et al., 1985 ; LAL et KHANNA, 1994). Il faut pour cela que la souche bactérienne choisie entraîne une nodulation effective, qu'elle soit capable de survivre dans des conditions environnementales défavorables, de se reproduire et de coloniser les racines. Les souches doivent donc posséder les caractéristiques requises pour s'adapter aux diverses contraintes de l'environnement.

Si la résistance des souches de rhizobia infestant les légumineuses des climats tempérés aux facteurs défavorables est déjà amplement étudiée, les connaissances relatives aux souches tropicales sont en revanche encore très fragmentaires. Dans ce travail, nous relatons les résultats d'expériences visant à étudier la réponse de souches de rhizobia collectées dans des sols de zones arides du Sénégal et de Tunisie aux stress de l'environnement naturel.

La résistance aux contraintes abiotiques

Le potentiel hydrique du sol peut influencer la symbiose entre les légumineuses et les rhizobia et, dans des conditions de sécheresse élevée, la nodulation peut être faible et/ou inefficiente. La sécheresse peut aussi influencer la survie des rhizobia pendant leur vie saprophytique (Chao et Alexander, 1982). En outre, l'aridité peut inhiber la fixation d'azote, la nitrogénase étant très sensible à des variations, même faibles, du potentiel osmotique du sol (SINCLAIR et al., 1987).

Vu qu'environ 15 % des sols des zones arides peuvent subir un excès de salinité, la tolérance au stress salin est une propriété très importante pour la survie au stade saprophytique et la compétitivité des rhizobia tropicaux. Les sols salins, qui se forment en général dans des conditions d'aridité élevée et de hautes températures, sont souvent alcalins et peuvent présenter une disponibilité réduite en phosphore, fer, zinc et manganèse. Une interaction entre salinité, pH et températures élevées peut avoir des effets plus néfastes sur la symbiose que chacun de ces facteurs pris séparément (ELSHEIKH et WOOD, 1989 a).

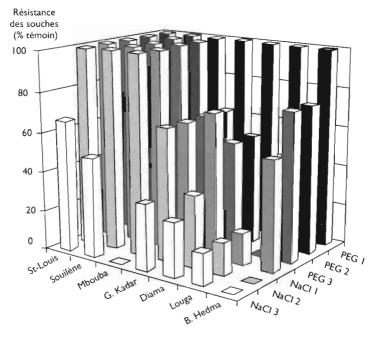

Le sel exerce un double effet sur les microbes : un effet spécifique dû à la toxicité des ions et un second lié au potentiel osmotique (BROWN, 1976). Toutefois, le stress hydrique étant en général de durée limitée, il suffit que les micro-organismes puissent y survivre un certain laps de temps. Le stress salin est lui permanent et les micro-organismes doivent s'y adapter afin non seulement de survivre mais aussi de se reproduire (SPRENT, 1984; ZAHARAN, 1992).

Sous les tropiques, la température peut atteindre 65-70 °C à la surface du sol et 50 °C dans les horizons inférieurs. Ces températures élevées inhibent généralement la croissance des micro-organismes. Ainsi chez les rhizobia les hautes températures peuvent empêcher la nodulation et inhiber la fixation d'azote (DAY et al., 1978). Une tolérance à 42,5 °C a été fréquemment signalée pour R. meliloti. Une résistance à des températures variant entre 44 °C à 47 °C chez certaines souches isolées au Kenya (ZHANG et al., 1991) et au Soudan (SHOUSHTARI et PEPPER, 1985) a même été observée. La température optimale pour la croissance des rhizobia varie selon la zone climatique où ils sont isolés. L'adaptation à des températures au-dessus de 40 °C peut permettre à certaines souches isolées au Sahel nigérien de maintenir et parfois d'augmenter l'activité de fixation symbiotique de l'azote (EAGLESHAM et AYANABA, 1984).

Pour évaluer la réponse de rhizobia tropicaux à des facteurs abiotiques typiques extrêmes tels qu'une salinité et des températures élevées, nous avons isolé des souches de rhizobia à partir des nodules d'Acacia tortilis subsp raddiana. Ces souches ont été cultivées sur des sols recueillis au Sénégal et en Tunisie. De plus, nous avons examiné des souches rhizobiales, de la collection du Laboratoire de microbiologie du sol de l'IRD de Dakar, appartenant à trois groupes taxonomiques : Sinorhizobium saheli (groupe SA), Sinorhizobium terangae (groupe S) et les espèces appartenant au cluster U (DE LAJUDIE et al., 1994).

Toutes les souches, à l'exception de trois d'entre elles provenant d'un échantillon de profondeur du site de Louga (Sénégal), se sont révélées capables de se multiplier à 40 °C. La moitié des souches montrait une croissance à 42,5 °C. Cinq croissaient encore à 45 °C, dont deux souches provenant d'un sol aride, deux d'un sol salin et une d'un isolat de surface (fig. 1).

Nous avons testé la résistance au sel de toutes les souches en évaluant leur croissance en présence de concentrations croissantes de NaCl. En outre, nous avons étudié la tolérance des rhizobia à la sécheresse en utilisant des solutés qui réduisent la disponibilité en eau du milieu de culture (AL-RASHIDI et al., 1982).

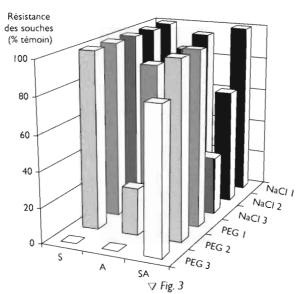


∇ Fig. 1 Température (°C)
Résistance à la température des souches isolées des sols sénégalais et tunisiens (a)
 et des souches de la collection IRD-Dakar (b).

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

ORS 1058 ORS ORS 929 La tolérance des rhizobia à des concentrations de NaCl > 1,5 % est rare, même si certaines souches sont capables de croître en présence de 2 % de NaCl (Hua et al., 1982; Zhang et al., 1991; Ghittoni et Bueno, 1995) et qu'un isolat obtenu sur *Prosopis* sp. a toléré 3 % de NaCl (Karanja et Wood, 1988).

Alors que la majorité des isolats des sols du Sénégal montre une croissance à 1 % de NaCl et que certains peuvent tolérer 1,5 % (St-Louis, Souilène, Mbouba) et 2 % (St-Louis), les souches provenant de Tunisie sont déjà inhibées à une concentration de 1 % (fig. 2).


∇ Fig. 2

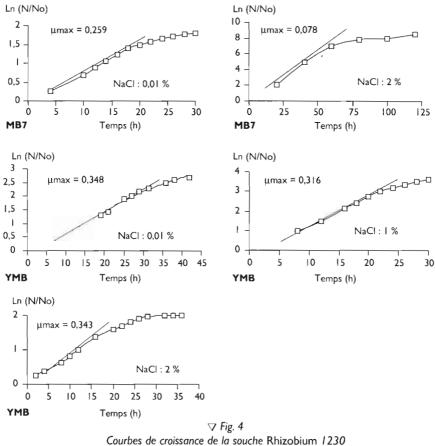
Tolérance à la salinité et au déficit hydrique développé par le polyéthylène-glygol (PEG) des souches isolées des sols sénégalais et tunisiens.

Les potentiels hydriques correspondant aux niveaux 1, 2 et 3 sont respectivement de : -0,98 MPa, -1,37 MPa et -1,81 MPa aussi bien pour le PEG que le NaCl.

Les isolats appartenant aux trois groupes taxonomiques de la collection IRD ont des sensibilités différentes au sel (fig. 3). Les plus tolérants sont les isolats du groupe S qui croissent à 2 % de NaCl, suivis par ceux du groupe A, parmi lesquels 45 % tolèrent 1,5 % de NaCl et plus de 30 % croissent en présence de 1 % de sel. Le groupe SA est le plus hétérogène, mais près de la moitié des souches est déjà inhibée à une concentration de 1,5 %.

Le stress osmotique causé par la présence de polyéthylène-glycol, retenu, parmi les polymères de faible masse moléculaire, pour réduire le potentiel osmotique,

Tolérance à la salinité et au déficit hydrique des souches des groupes S, A et SA de la collection IRD (Orstom).


Les potentiels hydriques correspondant aux niveaux 1, 2 et 3 sont respectivement de -0,98 MPa, -1,37 MPa et -1,81 MPa aussi bien pour le PEG que le NaCl.

se révélait être moins inhibiteur pour la croissance des bactéries que le stress salin (fig. 2 et 3). Cela confirme qu'à potentiel égal, l'effet toxique dû aux ions est plus important que l'effet osmotique du sel (ELSHEIKH et WOOD, 1989 b).

L'étude de la croissance des isolats de rhizobia, à différentes concentrations de NaCl, montre que l'effet du sel influence surtout la phase de latence, qu'elle ralentit en comparaison avec le témoin. Ces observations sont confirmées par les courbes de croissance obtenues pour 13 souches témoins inoculées dans un thermoturbidimètre à trois concentrations différentes de sel. La détermination des effectifs de bactéries se développant dans le turbidimètre à des concentrations différentes de NaCl, montre que la présence du sel dans le milieu réduit les taux de croissance et allonge le temps de latence. Cela confirme les résultats obtenus pour d'autres souches de rhizobia (SINGLETON et al., 1982 ; ELSHEIKH et WOOD, 1989 a ; CRAIG et al., 1991 ; GHITTONI et BUENO, 1995).

Les courbes de croissance d'une souche de *Rhizobium* (souche 1230), cultivée sur deux milieux de culture de niveau nutritionnel contrasté (riche [YMB] et pauvre [MB7]) et en présence de concentrations différentes de sel, sont illustrées figure 4. La détermination des effectifs de bactéries a été réalisée d'après le modèle logistique (ZWIETERING et al., 1990).

L'effet du sel sur la phase de latence et sur le taux de croissance est surtout marqué pour les cultures sur le milieu le plus pauvre (fig. 4, MB7), ce qui suggère que la tolérance de *Rhizobium* au sel dépend aussi de la composition du milieu de culture.

cultivée dans un milieu de culture pauvre (MB7) et riche (YMB) en présence de différentes concentrations de NaCl.

La résistance aux conditions de l'oligotrophie

Dans la majorité des sols tropicaux les facteurs limitants les plus importants sont, indépendamment du potentiel osmotique, la faible teneur en azote et en matière organique. Cette situation est imputable aux facteurs environnementaux et aux interférences de l'homme sur le développement des systèmes végétaux naturels (WANI et al., 1995).

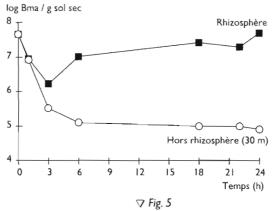
Il a été évalué que la perte moyenne annuelle des sols tropicaux en azote est de l'ordre de 78 à 570 kg.ha⁻¹, alors que sous climats tempérés elle n'atteint que 30-50 kg (DÖBEREINER et PEDROSA, 1987).

En général, dans les sols portant une végétation non perturbée, les teneurs en substances organiques présentent une limite déterminée par la productivité et la

nature du système végétal en place. Dans les conditions extrêmes des sols tropicaux, l'équilibre climat-végétation-sol peut être altéré par des facteurs abiotiques et biotiques. En effet, en plus des interventions néfastes de l'homme, la vitesse des processus de minéralisation et l'effet lessivant des précipitations modifient les caractéristiques physiques et chimiques du sol, en provoquant un épuisement progressif en substances nutritives. Dans ces conditions, aux limites de l'oligotrophie, les micro-organismes du sol doivent adopter des stratégies particulières pour survivre et rivaliser avec les autres organismes coexistant dans le même habitat. Le processus de survie d'une souche dans des conditions d'absence de sources d'énergie est très important en écologie microbienne. Il représente un mécanisme de conservation d'un génome qui ainsi subsistera et sera à nouveau capable de s'exprimer lorsque les conditions environnementales redeviendront favorables (MORITA, 1982).

Les bactéries du genre *Rhizobium* montrent, en général, une faible persistance dans les sols, ce qui peut entraîner une nodulation insatisfaisante des légumineuses et une réduction conséquente de leur productivité (EVANS et al., 1993 b). Il semble aussi que, pour une même espèce de *Rhizobium*, l'aptitude à survivre varie avec le type du sol.

Les causes les plus importantes de réduction du nombre de rhizobia dans les sols (entraînant en conséquence une nodulation insuffisante), sont l'aridité, un pH audessous de 4,6 et une température trop élevée (EVANS et al., 1988; EVANS et al., 1993 a).


La survie des souches de rhizobia peut varier en fonction de la proximité des racines. La rhizosphère est un habitat particulièrement favorable à la croissance des rhizobia et l'on a pu démontrer une augmentation sensible de la population de rhizobia dans le sol rhizosphérique comparé au sol sans racines. Le niveau de cette stimulation dépend de l'environnement, du type du sol, de l'espèce végétale, de l'âge des plantes et de la souche de *Rhizobium* (HIRSCH, 1996).

La compétence écologique (Weller, 1988) est la capacité d'un organisme à survivre et à croître à l'état naturel, en particulier dans la rhizosphère ; elle représente donc l'aptitude de cet organisme à coloniser les racines. Pour qu'une bactérie puisse coloniser une racine, elle doit posséder un ensemble de traits physiologiques caractéristiques (Weller, 1988 ; Hozore et Alexander, 1991) et manifester un large spectre de tolérance aux contraintes abiotiques (Alexander, 1971).

Nous avons choisi, afin d'évaluer son aptitude à survivre et à se développer à l'état saprophytique dans la rhizosphère, la souche de *Rhizobium* (1230) isolée à partir d'un sol aride, sablonneux et pauvre en matière organique du Sénégal. Cette souche tolère également les hautes températures, des niveaux de NaCl jusqu'à 2 %, et un bas potentiel osmotique (GREGO et al., 1995). Cette souche a, par la suite, été inoculée sur deux échantillons d'un sol similaire et de même origine que celui d'où elle a été isolée. Les deux échantillons de sol – dont l'un a été prélevé autour des jeunes racines d'un individu d'Acacia raddiana et l'autre à une distance de 30 m du tronc de la même plante – ont été stérilisés par radiation pour assurer la croissance de la souche en absence de compétition.

L'évolution de la densité de la souche de *Rhizobium* a été appréciée grâce à des évaluations périodiques, selon les techniques soit du dénombrement direct au microscope à l'épifluorescence (KEPPNER et PRATT, 1994), soit par la technique indirecte de l'ensemencement sur un milieu gélosé. L'évaluation du nombre de bactéries métaboliquement actives a été effectuée par dénombrement direct au microscope [épifluorescence, coloration avec l'orange d'acridine, incubation en présence de 2-(p-iodophényl)-3-(p-nitrophényl)-5-phényl tétrazolium chlorure (INT)] (FRY, 1990).

Après un déclin initial, les bactéries introduites dans le sol rhizosphérique commencent à se reproduire, et quelques heures après l'inoculation, la population métaboliquement active augmente largement, alors que, dans le même temps, le même inoculum introduit dans le sol sans racines régresse sensiblement (fig. 5). En outre, les comptages des colonies, sur le milieu gélosé, ont révélé que presque toutes les bactéries métaboliquement actives avaient la capacité de se reproduire.

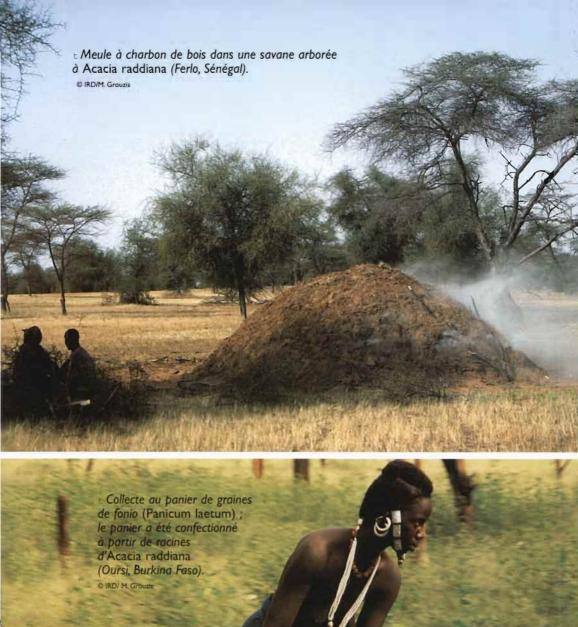


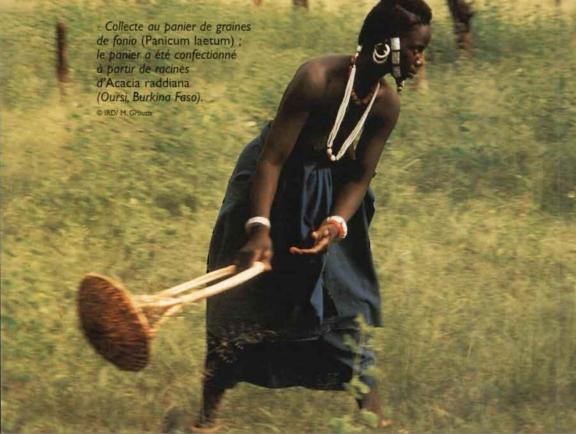
Aptitude de la souche Rhizobium 1230 à survivre à l'état naturel.

Variation du nombre de bactéries métaboliquement actives dans le sol de la rhizosphère
et dans un sol témoin situé à 30 m du tronc d'un Acacia raddiana.

Les différences obtenues, sur sol stérilisé, entre l'essai avec le sol rhizosphérique et le témoin sans racines peuvent, globalement, être attribuées aux différences relevées entre les teneurs en matière organique, en azote et en phosphore des deux échantillons (Grego et al., cet ouvrage)¹. Le sol prélevé à 30 m de la plante était en effet bien plus pauvre en substances nutritives que le sol rhizosphérique. D'autre part, la forte densité des populations bactériennes hétérotrophes et oligotrophes, liée à une teneur plus élevée en azote dans le sol rhizosphérique que dans le sol témoin, conforte ces résultats et confirme que la présence, à proximité de la racine, de substances aisément métabolisables, peut aider les rhizobia à survivre et, parfois, à se reproduire. La persistance de bactéries métaboliquement actives dans le sol rhizosphérique suggère en outre que pour

^{1. «} Activité biochimique de la rhizosphère d'Acacia raddiana au nord et au sud du Sahara ». In Grouzis M., Le Floc'h E., éd. : Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003 : 231-248.

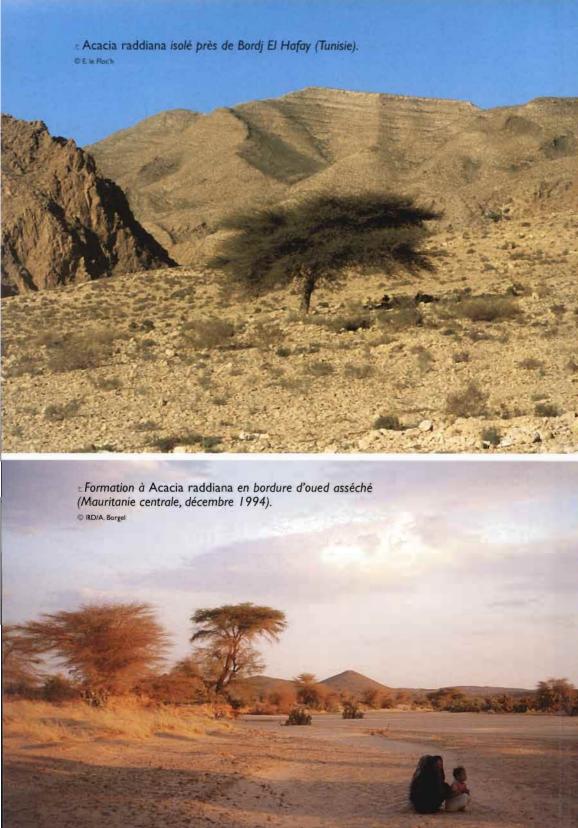



Acacia raddiana et gazelle sur une mosaïque romaine (1er siècle apr. J.-C.), à Sidi Graouch (Tunisie).

© E. Le Floch

© IRD/H. Guillaume

e Animaux pâturant dans une savane arborée à Acacia raddiana en fin de saison humide (Ferlo, Sénégal).


© IRD/M. Grouzis

s Céréaliculture avec Acacia raddiana. Animaux pâturant gousses et feuilles tombées au sol (Bled Talah, Tunisie).


E. le Floch

les rhizobia cet état physiologique peut représenter une stratégie de survie dans le sol (ROSZAK et COLWELL, 1987).

La capacité des bactéries du genre *Rhizobium* à survivre a été étudiée en laboratoire dans des conditions de privation de nutriments et, parfois, en présence de contraintes abiotiques. CLARKE et al. (1993), par exemple, ont montré l'effet mortel d'un double choc limitation du carbone et faible pH sur la survie d'une souche de *Rhizobium meliloti*.

Pour ce qui concerne la souche 1230, cultivée avec le mannitol comme seul facteur carboné et en présence ou en absence de NaCl à 2 %, la survie, en réponse à une condition soudaine de privation totale de nutriments, semble être liée au taux de croissance et à la présence du sel dans le tampon utilisé pour l'incubation (fig. 6) (LIPPI et al., 2000). Les résultats, qui rejoignent ceux relatifs à d'autres micro-organismes (GARCIA-LARA et al., 1993 ; GAUTHIER et al., 1989 ; HÖFLE, 1984 ; MOYER et MORITA, 1989 ; MUNRO et al., 1987 ; CACCIARI et al., 1995), suggèrent qu'un des facteurs les plus importants pour la survie est l'histoire physiologique de la souche bactérienne, c'est-à-dire les conditions de culture précédant le stress de la privation totale de nutriments (GOTTSHALL, 1990).

- Cellules développées et incubées en absence de sel
- △ Cellules développées en absence de sel et incubées en présence de sel
- ▲ Cellules développées en présence de sel et incubées en absence de sel
- Cellules développées et incubées en présence de sel

Effet du taux de croissance et de la concentration en NaCl sur le temps de demi-vie (a) et sur le taux de survie (b) de la souche de Rhizobium 1230 incubée durant 21 jours en conditions de privation totale de substances nutritives (données extraites de LIPPI et al., 2000)

La culture de la bactérie s'est effectuée dans le milieu de culture MB7 avec du mannitol comme facteur limitant carboné, et incubée en tampon phosphate 0,033 M, à pH 7

Le temps de demi-vie est obtenu en appliquant l'équation In2 / taux de mortalité.

Le taux de mortalité dérive de l'équation (In c.f.u. _{t = 21}- In c.f.u. _{t = 0})/t où t représente les jours d'incubation, et CFU le nombre de colonies formant unité. Le taux de survie est le rapport entre le nombre de bactéries à la fin de l'incubation et le nombre de bactéries au début de l'incubation. Les populations adaptées à la salinité sont par ailleurs plus aptes à survivre au double choc de la concentration élevée en sel et de la faible disponibilité en carbone que les autres populations. Les cellules précédemment cultivées sur un milieu salé ont apparemment acquis une plus grande résistance, même à la privation en nutriments. Cependant, si, outre la privation des nutriments, on ajoute du sel dans le tampon d'incubation, les cellules (= les souches) ne sont pas plus résistantes que celles n'ayant subi aucune adaptation (c. à d. préalablement cultivées en milieu salin).

Quoique perdant rapidement leur viabilité, les populations soumises au double choc montrent par contre une extraordinaire aptitude à reprendre leur croissance lorsqu'elles sont à nouveau inoculées dans un milieu de culture salé. Leurs taux de croissance (fig. 6) sont bien plus élevés que ceux obtenus en inoculant, dans les mêmes conditions de culture, les populations pendant leur phase exponentielle de croissance. En outre, cette souche de *Rhizobium* peut encore être mise en culture avec succès après quatre mois d'incubation, en présence comme en absence de NaCl (LIPPI et al., 2000).

L'interprétation de ces résultats suggère que la résistance aux concentrations élevées en sel peut représenter pour les rhizobia tropicales un trait important pour leur survie durant de longues périodes d'inanition et pour leur reproduction en conditions de salinité et de sécheresse. Cela confirme également leur capacité à persister pendant longtemps dans le sol puis à croître rapidement dans la rhizosphère quand les conditions sont appropriées (HIRSCH, 1996). La capacité d'un organisme à supporter les stress abiotiques est aussi liée à son état physiologique et à la possibilité qu'il a de moduler ses réponses aux contraintes de l'environnement naturel.

La compétition

Pour qu'une implantation réussisse, il importe que les bactéries inoculées survivent dans le nouvel environnement. Il est toutefois difficile, du fait de la grande hétérogénéité du milieu qui peut empêcher les bactéries d'atteindre et d'occuper les microhabitats les plus propices à leur survie (Postma et al., 1989), de prévoir le taux de survie des souches introduites dans un sol. Les différentes souches de rhizobia coexistant simultanément dans un sol présentent des différences de capacité à rivaliser pour l'occupation des nodules, et le succès dans la symbiose est influencé par les facteurs environnementaux, la plante hôte, la taille initiale de la population de rhizobia et sa répartition dans le sol (Heijnen et Van Veen, 1991; Postma et al., 1989). À ces contraintes, il faut ajouter la prédation, surtout par les protozoaires, qui est souvent responsable du déclin des rhizobia, après leur introduction dans le sol (Habte et Alexander, 1977). Les autres facteurs biotiques qui peuvent réduire le nombre des rhizobia incluent les bactériophages, les parasites comme le Bdellovibrio (Keya et Alexander, 1975), les antibiotiques produits par d'autres micro-organismes

et les bactériocines produites par d'autres rhizobia (HIRSCH, 1979).

Une résistance intrinsèque aux antibiotiques peut donc être importante, du point de vue écologique, pour les micro-organismes du sol, en raison d'une compétitivité plus élevée et d'une plus grande aptitude à survivre, principalement dans les sites arides où la sécheresse et le pH alcalin favorisent la croissance d'actinomycètes producteurs d'antibiotiques.

En ce qui concerne les isolats provenant des sols du Sénégal et de la Tunisie et les souches de la collection du Laboratoire de microbiologie du sol de l'IRD de Dakar, la résistance intrinsèque aux antibiotiques a été déterminée par l'addition de 9 antibiotiques au milieu de culture (tabl. I et II) (GREGO et al., 1995). Les isolats provenant des sites tunisiens sont, globalement, tolérants à tous les antibiotiques, bien qu'à différents degrés. Les isolats provenant des sites sénégalais ne présentent eux que de faibles niveaux de résistance, à part quelques isolats résistants à un seul antibiotique. La sensibilité aux antibiotiques, plus élevée chez les souches

√ Tableau I – Résistance aux antibiotiques des souches de rhizobia isolées dans des sols du Sénégal et de Tunisie.

Antibiotiques	% des isolats résistants							
	St-Louis	G.Kadar	Mbouba	Louga	Diama	Souilène	Talah	
Streptomycine	50	0	33	0	0	50	13	
Ampicilline	67	67	33	40	45	100	38	
Erithromycine	67	0	100	80	9	50	100	
Polymixine	50	33	33	100	27	0	13	
Acide Nalydixique	67	33	100	100	100	100	100	
Néomycine	33	0	0	0	0	0	13	
Chloramphénicol	33	33	0	0	9	50	25	
Kanamycine	33	0	0	0	0	0	38	
Rifampicine	0	33	0	60	9	50	50	

Les antibiotiques ont été ajoutés à la concentration de 50 µg.ml⁻¹.

√ Tableau II – Résistance aux antibiotiques des souches de rhizobia appartenant à la collection IRD.

Antibiotiques	to the law of the State of	% des isolats résistants					
	Groupe SA	Groupe S	Groupe A				
Streptomycine	8	0	47				
Ampicilline	8	0	21				
Erithromycine	100	100	100				
Polymixine	0	0	100				
Acide Nalydixique	100	100	100				
Néomycine	8	0	5				
Chloramphénicol	23	75	5				
Kanamycine	46	0	58				
Rifampicine	8	25	42				

Les antibiotiques ont été ajoutés à la concentration de 50 µg.ml-1.

sénégalaises que chez les souches tunisiennes, peut être imputée à la biomasse microbienne moins abondante dans la rhizosphère des *Acacia raddiana* de Tunisie (GREGO et al, 1995).

Conclusion

Les rhizobia tropicaux présentent des caractéristiques physiologiques qui peuvent contribuer à leur survie dans les environnements peu hospitaliers des sols tropicaux. Leur résistance à plusieurs stress abiotiques et leur amplitude écologique sont en faveur de leur utilisation pour les essais d'inoculation des légumineuses pérennes dans les programmes de reforestation. Cependant, une meilleure survie ne signifie pas obligatoirement qu'une fois introduits dans la rhizosphère, ces rhizobia soient capables de s'établir et d'atteindre les sites de la nodulation. Pour qu'elle puisse stimuler le développement de la plante, toute souche isolée doit : I) être adaptée aux conditions du sol ; 2) être une fixatrice d'azote efficiente en symbiose avec la plante hôte ; 3) être capable de s'établir en gagnant la compétition avec les populations rhizobiales indigènes (GILLER et CADISH, 1995).

Plusieurs chercheurs ont orienté leurs recherches vers la manipulation génétique des rhizobia afin de leur faire acquérir certaines propriétés spécifiques et améliorer ainsi leurs performances de souches inoculantes. Par contre, beaucoup d'autres optent pour l'utilisation des souches « site-spécifiques », c'est-à-dire indigènes de l'habitat où elles doivent être inoculées. L'adaptation à un ou plusieurs stress abiotiques augmente l'aptitude d'un organisme et peut contribuer à son succès dans la compétition pour atteindre les sites de pénétration racinaires (ELSHEIKH et WOOD, 1995; ZOU et al., 1995). En effet, le stress dû à la compétition et à l'antagonisme microbien s'ajoute souvent aux stress liés aux conditions parfois extrêmes du milieu; la résultante définit le degré de compétitivité d'une souche.

L'étude de la physiologie des rhizobia face aux contraintes environnementales peut apporter des indications utiles pour une meilleure compréhension des stratégies qu'elles adoptent pour résister aux conditions de privation de nutriments et être capables, les conditions redevenant favorables, de reprendre une activité et d'atteindre les sites de nodulation.

Auteurs

I. Cacciari, E. Di Mattia, P. Quatrini, M. Moscatelli et S. Grego DABAC, Universita della Tuscia, 01100 Viterbo, Italie D. Lippi, M. R. De Paolis IBEV-CNR, Area Ricerca di Roma, Monterotondo Scalo, Italie

Références bibliographiques

ALEXANDER M.,

1971 – Microbial Ecology. New York, John Wiley & Sons.

ALEXANDER M.,

1985 – Ecological constraints on nitrogen fixation in agricultural ecosystems.

Adv. Microbial Ecology, 8: 163-183.

AL-RASHIDI R. K., LOYNACHAN T. E., FREDERICK L. R.,

1982 – Dessication tolerance of four strains of Rhizobium japonicum.

Soil Biol. Biochem., 14: 489-493.

Brown A. D.,

1976 – Microbial water stress. *Bacteriol. Rev.*, 40: 803-846.

CACCIARI I., LIPPI D., PIETROSANTI T., PIETROSANTI W..

1995 – Effect of previous growth conditions on starvation survival and endogenous metabolism rate of Arthrobacter fluorescens.

J. Basic. Microbiol., 35: 359-366.

CHAO W. L., ALEXANDER M.,

1982 – Influence of soil characteristics on the survival of *Rhizobium* in soils undergoing drying. Soil Soc. Am. J., 46: 949-952.

CLARK L. M., DILWORTH M. J., GLENN A. R.,

1993 – Survival of *Rhizobium meliloti* WSM419 in laboratory culture: effect of combined pH shock and carbon substrate stress. *Soil Biol. Biochem.*, 9:1289-1291.

CORNET F., OTTO C., RINAUDO G., DIEM H. G., DOMMERGUES Y.,

1985 – Nitrogen fixation by Acacia holosericea grown in field-simulating conditions. Acta Oecol./Oecol. Plant., 6 (20): 211-218.

CRAIG G. F., ATKINS C. A., BELL D. T.,

1991 – Effect of salinity on growth of four strains of *Rhizobium* and their infectivity and effectiveness on two species of *Acacia*. *Plant Soil*, 133:253-262.

Danso S. K. A., Bowen G. D., Sanginga N.,

1992 – Biological nitrogen fixation in trees in agro-ecosystems. *Plant Soil*, 141:177-196.

DAY J. M., ROUGHLEY R. J., EAGLESHEAM A. R. J., DYE M., WHITE S. P.,

1978 – Effect of high soil temperatures on modulation of cowpea, Vigna utiguiculata. Annuals of Applied Biology, 88: 476-481.

DIAGNE O.,

1988 – Études préliminaires sur quatre arbres fixateurs d'azote. Rev. Sénégal. Rec. Agric. Halieut., 1: 36-46.

DÖBEREINER J., PEDROSA F. O.,

1987 – Nitrogen-fixing bacteria, in non leguminous crop plants. Berlin, Springer-Verlag.

DREYFUS B. L., DOMMERGUES Y. R.,

1981 — Nodulation of *Acacia* species by fastand slow-growing tropical strains of *Rhizobium*. *Appl. Environ. Microbiol.*, 41:97-99.

EAGLESHAM A. R. J., AYANABA A.,

1984 – «Tropical stress ecology of rhizobia, root nodulation and legume nitrogen fixation ».

In Subba Rao N. S., ed.: Current Developments in Biological Nitrogen Fixation.

ELSHEIKH E.A. E., WOOD M.,

New Delhi, Oxford and IBH: 1-35.

1989 a — Response of chickpea and soybean rhizobia to salt: influence of carbon source, temperature and pH. Soil Biol. Biochem., 21:883-887.

ELSHEIKH E.A. E., WOOD M.,

1989 b — Response of chickpea and soybean rhizobia to salt: osmotic and specific ion effects of salts. Soil Biol. Biochem., 21:889-895.

ELSHEIKH E.A. E., WOOD M.,

1995 – Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soils. Soil Biol. Biochem., 27:657-661.

EVANS J., HOCHMAN Z., O'CONNOR G. E., OSBORNE G. J.,

1988 – Soil acidity and *Rhizobium*: their effects on the modulation of subterranean clover on the slopes of southern New South Wales. *Aust. J. Agric. Res.*, 38:605-618.

EVANS J., WALLACE C., DOBROWOLSKI N.,

1993 a – Interaction of soil type and temperature on the survival of Rhizobium leguniinosaruni bv viciae. Soil Biol. Biochem., 25: 1153-1160.

EVANS J., WALLACE C., DOBROWOLSKI N., PRITCHARD I., O'CONNOR G. E., SULLIVAN B.,

1993 b – Requirement for inoculation of field pea with *Rhizobium* and lime pelleting seed in soils of western Australia. *Aust. J. Exp. Agric.*, 33: 49-51.

FRY J. C.,

1990 – Direct methods in biomass estimation.

Methods Microbiol., 22:41-85.

GARCIA-LARA J., MARTINEZ J., VILAMÙ M., VIVES-REGO J.,

1993 – Effect of previous growth conditions on the starvation-survival of *L. scherichia coli* in seawater. *J. Gen. Microbiol.*, 139:425-431.

GAUTHIER M. J., MUNRO P. M., BREITTMAYER V. A.,

1989 – Influence of prior growth conditions on low nutrient response of Escherichia coli in seawater. Can. J. Microbiol., 35: 9-383.

GHITTONI N. E., BUENO M. A.,

1995 – Peanut rhizobia under salt stress: role of trehalose accumulation in strain ATCC 51466. *Can. J. Microbiol.*, 41:1021-1030.

GILLER K. E., CADISCH G.,

1995 – Future benefits from biological nitrogen fixation: an ecological approach to agriculture. *Plant Soil*, 174: 255-277.

GOTTSCHALL J. C.,

1990 – Phenotypic response to environmental changes. FEMS Microbiol. Ecol., 74: 93-102.

GREGO S., QUATRINI P., BADALUCCO L., DE CESARE F., ZANOTTI C., CACCIARI I.,

1995 – « Souches résistantes de Rhizobium dans une rhizosphère caractérisée d'Acacia au nord et au sud du Sahara ». In Pontanier R., M'Hiri A., Akrimi N., Aronson J., Le Floc'h E., éd.: L'homme peut-il refaire ce qu'il a défait ?, Paris, John Libbey Eurotext: 201-210.

HABTE M., ALEXANDER M.,

1977 – Further evidence for the regulation of bacterial population in soil by protozoa. *Arch. Microbiol.*, 113:181-183.

HEIJNEN C. E., VAN VEEN J.A.,

1991 – A determination of protective microhabitats for bacteria introduced into soil. FEMS *Microbiol. Ecol.*, 85:73-80.

HENZELL E. F.,

1988 – The role of biological nitrogen fixation research in solving problems in tropical agriculture.

Plant and Soil. 108: 15-21.

HERRERA M. A., SALAMANCA C. P., BAREA J. M.,

1993 – Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems.

Appl. Environ. Microbiol., 59: 29-133.

HIRSCH P. R.,

1979 – Plasmid-determined bacteriocin production by *Rhizobium leguminosarum*. *J. Gen. Microbio.*, 113:19-228.

HIRSCH P. R.,

1996 – Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol., 133: 159-171.

HÖFLE M. G.,

1984 – Transient response of glucoselimited cultures of *Cytophaga johnsonae* to nutrient excess and starvation. *Appl. Environ. Microbiol.*, 47: 356-362.

HOZORE E., ALEXANDER M.,

1991 – Bacterial characteristics important to rhizosphere competence. *Soil Biol. Biochem.*, 8:717-723.

HUA S.-S.T., TSAI V.Y., LICHENS G. M., NOMA A.T.,

1982 – Accumulation of aminoacids in *Rhizobium* sp. strain WRI 00 I in response to sodium chloride salinity. *Appl. Environ. Microbiol.*, 44: 135-140.

KARANJA N. K., WOOD M.,

1988 – Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L) in Kenya: tolerance of high temperatures and antibiotic resistance. Plant and Soil. 112:15-22.

KEPPNER R. L., PRATT J. R.,

1994 – Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present.

Microbiological Reviews, 95: 603-615.

KEYA S. O., ALEXANDER M.,

1975 – Regulation of parasitism by host density: the *Bdellovibrio-Rhizobium* interrelationship.

Soil Biol. Biochem., 7: 231-237.

LAJUDIE P. de, WILLEMS A., POT B., DEWETTINCK D., MAESTROJUAN G., NEYRA M., COLLINS M. D., DREYFUS B., KERSESTER K., GILLIS M.,

1994 – Polyphasic taxonomy within the Rhizobium-Agrobacteriiim RRNA cluster and the proposal of two new species: Rhizobium teranga and Rhizobium saheli. Int. J. Syst. Bacteriol., 44: 715-733.

LAL B., KHANNA S.,

1994 – Selection of salt tolerant Rhizobium isolates of Acacia nilotica. World J. Microbiol. Biotechnol., 10: 637-639.

LIPPI D., DE PAOLIS M. R., DI MATTIA E., GREGO S., PIETROSANTI T., CACCIARI I.,

2000 – Effect of salinity on growth and starvation-survival of a tropical *Rhizobium* strain.

Biol. Fertil. Soils, 30: 276-283.

MORITA R. J.,

1982 – Starvation-survival of heterotrophs in the marine environments. *Adv. Microb. Ecol.*, 6:171-198.

MOYER C. I., MORITA R.Y.,

1989 – Effect of growth rate and starvation-survival on the viability and stability of a psycrophilic marine bacterium. Appl. Environ. Microbiol., 55: 1122-1127.

Munro P. M., Gauthier M. J., Laumond F. M.,

1987 – Changes in Escherichia coli cells starved in seawater or grown in seawater-wastewater mixtures. Appl. Environ. Microbiol., 53: 1476-1481.

NDOYE I., GUEYE M., DANSO S. K.A., DREYFUS B.,

1995 — Nitrogen fixation in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil, 172:175-180.

POSTMA J., WALTER S., VAN VEEN J. A.,

1989 – Influence of different initial moisture contents on the distribution and population dynamics of introduced Rhizobium leguminosarum biovar trifolii. Soil Biol. Biochem., 21: 437-442.

ROSZAK D. B., COLWELL. R. R.,

1987 – Survival strategies of bacteria in the natural environment. *Microbiol. Rev.*, 51: 365-379.

SAXENA A. K., REWARI R. B.,

1992 – Differential responses of chickpea (Cicer arieti um L.) -Rhizobium combination to saline soil conditions. Biol. Fertil. Soils. 13:31-34.

SHOUSHTARI N. H., PEPPER I. L.,

1985 - Mesquita *Rhizobia* isolated from the Sonoran desert: physiology and effectiveness.

Soil Biol. Biochem., 17: 797-802.

SINCLAIR T. R., MUCHOV R. C., LUDLOW M. M., LEACH G. J., LAWN R. J., FOALE M. A.,

1987 – Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram.

Field Crops Res., 17: 121-140.

SINGLETON P.W., EL SWAIFY S.A., BOHLOOL B. B.,

1982 – Effect of salinity on Rhizobium growth and survival. Appl. Environ. Microbiol., 44:884-890.

SKUJINS J.,

1984 – Microbial ecology of desert soils. Adv. Microb. Ecol., 7: 49-91.

SPRENT J. L.,

1984 – « Effects of drought and salinity on heterotrophic nitrogen-fixing bacteria and on infection of legumes by *rhizobia* ». In Veeger C., Newton W. E., eds: Advances in Nitrogen Fixation Research, The Hague, Martinus Nijhoff/Dr. W. Junk: 295-302.

WANI S. P., RUPELA O. P., LEE K. K.,

1995 – Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. *Plant and Soil*, 174: 29-49.

WELLER D. M.,

1988 – Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol., 26: 379-407.

ZAHARAN H. H.,

1992 – Conditions for successful Rhizobium-legume symbioses in saline environments. Biol. Fertil. Soils, 12:73-80.

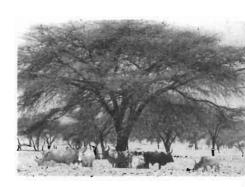
ZHANG X., HARPER R., KARISTO M., LINDSTRÖM K..

1991 – Diversity of *Rhizobium* bacteria isolated from the root nodules of leguminous trees.

Int. J. Syst. Bacteriol., 41:104-113.

ZOU N., DART P. J., MARCAR N. E.,

1995 – Interaction of salinity and rhizobial strain on growth and N2-fixation by *Acacia ampliceps*. *Soil Biol. Biochem.*, 27: 409-413.


ZWIETERING M. H., JONGENBURGER I., ROMBOUTS F. M., VAN'T RIET K.,

1990 – Modeling of the bacterial growth curve.

Appl. Environ. Microbiol., 56: 1875-1881.

Le potentiel fixateur d'azote d'Acacia raddiana comparé à celui d'Acacia senegal, Acacia seyal et Faidherbia albida

M. GUEYE I. NDOYE

Résumé

Une expérience en pots a été conduite en serre pour estimer le potentiel fixateur d'azote d'Acacia tortilis subsp. raddiana par la méthode de dilution isotopique ¹⁵N en utilisant Parkia biglobosa comme arbre de référence. Le pourcentage d'azote dérivé de la fixation (% Ndfa) mesuré cinq mois après transplantation était élevé (58,1 %) comparativement à celui de A. senegal (27,2 %) ou A. albida (Syn. Faidherbia albida) (30,4 %). A. raddiana peut donc, avec A. seyal (% Ndfa = 59,7) être classé parmi les arbres à haut potentiel fixateur d'azote.

Mots-clés:

ACACIA RADDIANA, DILUTION ISOTOPIQUE ¹⁵N, FIXATION D'AZOTE, PARKIA BIGLOBOSA,
PLANTE DE RÉFÉRENCE.

Abstract

A pot greenhouse-experiment has been conducted to assess nitrogen-fixing potential of Acacia tortilis subsp. raddiana through the isotopic dilution method ¹⁵N using Parkia biglobosa as tree of reference. The percentage of nitrogen derived from the fixation (% Ndfa) measured five months after transplantation was high (58.1 %) compared

with that of A. senegal (27.2 %) or A. albida (Syn. Faidherbia albida) (30.4 %). Therefore A. raddiana may, with A. seyal (% Ndfa = 59.7), be classified among trees with high nitrogen-fixing potential.

Keywords:

ACACIA RADDIANA, 15N ISOTOPIC DILUTION, NITROGEN FIXATION, PARKIA BIGLOBOSA, PLANT OF REFERENCE.

Introduction

Beaucoup d'opportunités s'offrent actuellement pour augmenter la contribution de la fixation biologique de l'azote (FBA) au développement de l'agriculture. De plus en plus, une attention particulière est accordée aux arbres fixateurs d'azote (AFAs) à cause de leur aptitude à maintenir, voire améliorer, la fertilité des sols. Les questions posées sont : quelle quantité d'azote est fixée par les AFAs puis transmise aux cultures associées ? Quel AFA choisir pour une bonne gestion de l'azote fixé dans le cadre d'une agriculture durable ?

Dans cette communication, nous tentons de répondre à ces questions avec l'exemple d'*Acacia tortilis* subsp. *raddiana*, en nous fondant sur son potentiel fixateur d'azote comparé à celui d'autres acacias. Le potentiel fixateur d'azote est la quantité d'azote fixé par la plante en dehors de toute contrainte environnementale (DANSO et al., 1992; DOMMERGUES, 1995).

Matériel et méthodes

Des graines de A. raddiana et de Parkia biglobosa stérilisées dans de l'acide sulfurique respectivement pendant 120 et 60 mn ont été mises à germer pendant deux jours dans des boîtes de Pétri contenant de l'eau gélosée à 0,8 %. Elles ont ensuite été transplantées dans des pots de 30 cm de diamètre, contenant chacun 20 kg de sol stérile prélevé à Dakar, station de Bel Air. Au moment de la transplantation, les plantules ont été inoculées avec la souche de Rhizobium ORS 1016 dont la suspension contenait 109 cellules.ml⁻¹. Une solution de (15NH₄)₃ SO₄ contenant 10,01 % d'excès isotopique 15N a été apportée dans chaque pot à raison de 0,2 g N par pot. Tous les pots ont été ensuite disposés au hasard dans une serre grillagée et arrosés quotidiennement avec de l'eau jusqu'à ce que l'humidité du sol soit équivalente à la capacité au champ. Cinq mois après transplantation dans les pots, les plantes ont été récoltées. Chaque organe séché a été pesé après quoi la teneur en azote (N%) et l'excès isotopique (% 15Nei) ont été déterminés au laboratoire de Seibersdorf (Agence internationale de l'énergie atomique, AIEA). La fixation d'azote a été estimée en utilisant l'équation de FRIED et MIDDLEBOE (1977) avec P. biglobosa comme arbre de référence.

Résultats et discussions

Le poids sec et l'azote total d'A. raddiana ont été supérieurs à ceux de l'arbre de référence P. biglobosa (tabl. l). L'expérience a montré une importante nodulation de A. raddiana (0,35 g de nodules secs par arbre).

L'excès isotopique (% ¹⁵Nei) a été significativement inférieur à celui de *P. biglobosa*, ce qui indique une fixation d'azote par *A. raddiana*. Avec un pourcentage d'azote dérivé de la fixation (%Ndfa) de 58, l % significativement supérieur à celui de *A. senegal* (27,2 %) et à celui de *Faidherbia albida* (30,4 %), *A. raddiana* pourrait, avec *A. seyal* (% Ndfa = 59,7), être classé parmi les AFAs ayant un potentiel fixateur élevé. Cependant, la quantité d'azote fixé est très faible (0,5 g N.plante⁻¹, tabl. ll). Cela est dû à son faible rendement, 47 g de matière sèche totale par arbre (tabl. l), et non à son % Ndfa.

L'intérêt des AFAs réside dans le fait qu'ils peuvent croître et contribuer significativement à l'amélioration de la fertilité des sols par un important retour de l'azote fixé (KANG. et al., 1985; WILSON et al., 1986). Ainsi, les racines des AFAs ne doivent pas être négligées à cause de leur forte contribution (50 à 60 %) à l'azote total fixé (SANGINGA et al., 1992). Dans notre étude, les racines de A. raddiana

∇ Tableau I – Biomasse sèche, azote total et excès isotopique ¹⁵N
d'Acacia raddiana, A. senegal, A. seyal, Faidherbia albida et Parkia biglobosa
cultivés dans des pots contenant 20 kg de sol.

Arbres	Biomasse sèche (g/arbre)	Azote total (g/arbre)	Excès isotopique (¹⁵ Nei)
P. biglobosa	13,1 d	0,3 c	0,32 a
A. raddiana	47,2 c	0,9 bc	0,13 c
A. senegal	63,6 b	1,3 b	0,23 b
A. seyal	184,4 a	2,8 a	0,13 c
F. albida	60,2 b	1,2 b	0,22 Ь

Dans chaque colonne, les valeurs suivies d'une même lettre ne sont pas significativement différentes à p=0.05 d'après le test de Newman-Keuls.

√ Tableau II – Pourcentage (% Ndfa) et quantité d'azote fixé (Ndfa)

dans les différents organes d'Acacia raddiana cultivé dans des pots contenant 20 kg de sol

(mesure effectuée par la méthode de dilution isotopique ¹⁵N).

Organe	% Ndfa	Ndfa (g N/arbre)
Feuilles	57,1 ab	0,2 Ь
Tiges	52,6 b	0,2 Ь
Racines	64,5 a	0,1 Ь
Total	58,1 ab	0,5 a

Dans chaque colonne, les valeurs suivies d'une même lettre ne sont pas significativement différentes à p = 0,05 d'après le test de Newman-Keuls.

contiennent 20 % de l'azote fixé. Dans ces conditions, A. raddiana, est-il approprié dans les systèmes de culture ? Nous répondons que A. raddiana est un AFA qui peut valablement être choisi dans les systèmes agroforestiers parce que tout son potentiel fixateur d'azote élevé pourrait être totalement exprimé par une augmentation de son rendement grâce une sélection de provenances, de lignées ou de clones ayant un rendement élevé, ou encore grâce à un programme de sélection ou de greffage. En dépit de la concurrence qu'il exerce sur la végétation avoisinante par son système racinaire traçant (CAZET, 1989), on pourrait envisager l'introduction de l'espèce améliorée dans les différents systèmes culturaux pour une agriculture durable.

Auteurs

M. Gueye MIRCEN/Centre ISRA-IRD, BP 1386, Dakar, Sénégal

I. Ndoye

Université Cheikh Anta Diop, Département biologie végétale, BP 5005, Dakar, Sénégal

Références bibliographiques

CAZET M.,

1989 – Les plantations linéaires denses sur les sols sableux dégradés de la zone centre-nord du Sénégal. Bois For Trop., 222 : 27-37.

Danso S. K. A., Bowen G. D., Sanginga N.,

1992 – Biological nitrogen fixation in trees in agro-systems. *Plant Soil*, 141:177-196.

DOMMERGUES Y. R.,

1995 – Nitrogen fixation by trees in relation to soil nitrogen economy. Fert. Res., 42: 215-230.

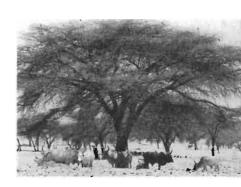
FRIED M., MIDDLEBOE V.,

1977 – Measurement of nitrogen fixed by legume crop. Plant Soil, 43:713-715.

KANG B.T., GRIMME H., LAWSON T.T.,

1985 – Alley cropping sequentially cropped maize and cowpea with *Leucaena* on sandy soil in Southern Nigeria. *Plant Soil*, 85: 267-277.

SANGINGA N., ZAPATA F., DANSO S. K. A., BOWEN G. D.,


1992 – « Estimating nitrogen fixation in Leucaena and Gliricidia using different ¹⁵N labelling methods ». In Mulongoy K., Gueye M., Spencer D. C., eds: Biological nitrogen fixation and sustainability of tropical agriculture, Chichester, New York, Brisbane, Toronto and Singapore, Wiley-Sayce and AABNF co-publication: 265-275.

WILSON G. F., KANG B.T., MULONGOY K.,

1986 – Alley cropping: trees as sources of green-manure and mulch in the tropics. *Biol. Agric. Hortic.*, 3:251-267.

Écologie des champignons mycorhiziens arbusculaires infectant Acacia raddiana

O. DIAGNE K. INGLEBY

Résumé

Des échantillons de sol ont été prélevés à l'aide d'une tarière autour de quatre légumineuses arborescentes de dix ans cultivées en couloirs dans la station agroforestière de Thiénaba, au Sénégal. Les échantillons ont été collectés à cinq profondeurs et à trois distances du tronc des arbres. Pour déterminer le potentiel mycorhizien des sols, un essai biologique a été conduit en serre avec du mil. Un échantillonnage de sols a été également effectué au nord (Tunisie) et au sud (Sénégal) du Sahara. L'effectivité de souches de Rhizobium et de champignons endomycorhiziens a été testée en pépinière sur Prosopis juliflora, Prosopis chilensis et deux provenances d'Acacia raddiana. Pour toutes les parcelles, les plants élevés sur les sols prélevés en surface (0-25 cm) sont plus grands et sont plus infectés que ceux élevés sur les sols prélevés en profondeur. Le taux d'infection des plants est plus élevé pour les sols prélevés sous Acacia raddiana et près du tronc, contrairement aux autres espèces. L'infection mycorhizienne ne dépend ni du climat, ni des formations végétales. Par contre, elle diminue avec les perturbations du sol. La réponse à l'inoculation des espèces arborescentes est très variable. Cependant, les courbes de nodulation et d'infection mycorhizienne sont similaires pour les deux provenances d'Acacia raddiana.

Mots-clés:

ACACIA RADDIANA, DISTRIBUTION MYCORHIZIENNE, RHIZOBIUM, LÉGUMINEUSES ARBORESCENTES, CULTURE EN COULOIRS, SAHARA.

Abstract

Soil cores were sampled from around four leguminous tree species in 10-year-old alley cropping plots at Thiénaba, Senegal. Samples were collected from five depths and at three distances from the trunk. To determine the inoculum potential of the soils, mycorrhizal biossay was conducted in the greenhouse using millet seedling. Soil sampling was also conducted in the North (Tunisia) and the South (Senegal) of the Sahara desert. In order to test the effectiveness of rhizobial and mycorrhizal inocula, an experiment was conducted with Prosopis juliflora, Prosopis chilensis and two provenances of Acacia raddiana. For all plots, seedlings grown in soils from the surface (0-25 cm) were larger and formed higher levels of infection than those grown in soils from 25 to 50 cm depth. Mycorrhizal infection of the seedlings was greatest in soil collected near the tree. Mycorrhizal infection depended neither on climate nor on plant cover. In contrast, it decreased with soil disturbance. Inoculation test showed great variation between the tree species. However, nodulation and mycorrhizal infection of the two provenances of Acacia raddiana were similar.

Keywords:

ACACIA RADDIANA, MYCORRHIZAL DISTRIBUTION, RHIZOBIUM, LEGUMINOUS TREE, ALLEY CROPPING, SAHARA.

Introduction

Il est universellement reconnu que les champignons mycorhiziens contribuent efficacement à l'établissement et au maintien des arbres dans des conditions écologiques très contraignantes (LE TACON et al., 1987). Certains arbres ne peuvent croître sans être associés à des champignons mycorhiziens (IANOS, 1987). Les hyphes mycéliennes explorent un grand volume de sol et permettent ainsi aux plantes colonisées d'obtenir l'eau et les substances nutritives nécessaires à leur fonctionnement et à leur croissance. Elles seraient ainsi à l'origine de la plus grande tolérance à la sécheresse des plantes mycorhizées par rapport aux plantes non mycorhizées (NELSON, 1987). Cette tolérance est cependant liée à l'espèce de champignon mycorhizien, notamment arbusculaire (CAM) associée à la plante (ALLEN et BOOSALIS, 1983). L'infection mycorhizienne peut augmenter la surface et la concentration en P des feuilles, et réduire les substances carbonées de ces organes (HARRIS et PAUL, 1987) ou modifier le débit de l'exsudation de substances racinaires (LAHEURTE et BERTHELIN, 1986). Au niveau de la matière organique du sol, les CAM sont capables de minéraliser les phosphates organiques et de faire bénéficier les plantes associées du phosphore libéré (JAYACHANDRAN et al., 1992). Ils permettent aux arbres de lutter contre certains facteurs adverses de l'environnement tels que les sols très acides et très alcalins, la salinité et la présence de pathogènes (MARX, 1969; REEVES, 1987; DUCHESNE, 1993). Le rôle des CAM se traduit dans la rhizosphère par une série de modifications de la population de micro-organismes, de la composition des éléments nutritifs et de la structure du sol, et des interactions plantes-micro-organismes (INGHAM et MOLINA, 1991). Ainsi, l'étude des CAM est importante non seulement du fait du rôle direct qu'ils jouent sur les performances de l'arbre mais également à cause de leur contribution au fonctionnement de l'écosystème. La composition et le fonctionnement des associations endomycorhiziennes ont été surtout étudiés en conditions contrôlées avec des plantes isolées (BAREA, 1991; SHARMA et al., 1996), les observations en conditions naturelles étant très limitées (Bâ et al., 1996).

Dans la première partie de ce travail, la distribution des CAM a été étudiée dans un système agroforestier de Thiénaba (Sénégal). De plus, si la plupart des plantes sont mycorhizées (BRUNDRETT, 1991; SIEVERDING, 1991), le degré de leur infection par les CAM ainsi que le bénéfice procuré par ces champignons dépendent de la plante hôte et du milieu. Cette dépendance justifie l'étude du potentiel endomycorhizien d'échantillons de sol prélevés sous Acacia raddiana, A. nilotica et Prosopis juliflora qui a été décrite dans la deuxième partie de ce travail. Ainsi les CAM peuvent être affectés par plusieurs facteurs environnementaux adverses : feux, érosion, pratiques culturales, pesticides, changements de température du sol, engorgement et compaction des sols (ABBOTT et ROBSON, 1991; SIEVERDING, 1991; HABTE et al., 1992). La troisième partie de ce travail a eu pour objet d'évaluer l'infection des racines d'Acacia raddiana par des CAM provenant de zones dégradées et non dégradées du nord (Tunisie) et du sud (Sénégal) du Sahara. L'évaluation de la double inoculation (par Rhizobium et CAM) et de la croissance de plants de deux provenances d'A. raddiana comparées à deux espèces de Prosopis dans un sol de pépinière a été réalisée dans la dernière partie.

Matériel et méthodes

Distribution des champignons mycorhiziens arbusculaires

Des plantations d'A. raddiana, A. nilotica, A. senegal et P. juliflora ont été effectuées il y a dix ans à la station expérimentale agroforestière de Thiénaba, située à 100 km de Dakar. Les caractéristiques chimiques du sol de la station sont présentées dans le tableau I. Les plants ont été installés en lignes distantes de 10 m avec un écartement de 2,50 m sur chaque ligne. La culture des lignes intercalaires en mil et en arachide a été réalisée en alternance séparée par une année de jachère.

Des prélèvements de sols ont été effectués à l'aide d'une tarière suivant deux transects de part et d'autre d'un arbre à I m, 2 m et 5 m du tronc. À chacun de ces points, les échantillons ont été prélevés à cinq profondeurs : 0-25 cm ; 25-50 cm ; 50-100 cm ; 100-200 cm et 200-300 cm. Cette dernière profondeur n'a été atteinte que pour le prélèvement à I m du tronc. Les prélèvements ont

√ Tableau I – Caractéristiques chimiques
des sols de Thiénaba prélevés sous Acacia raddiana, Acacia nilotica,
Acacia senegal et Prosopis juliflora.

Espèces concernées	C total (g.kg ⁻¹)	N total (g.kg ⁻¹)	P total (g.kg ⁻¹)	K total (g.kg ⁻¹)	C/N
Acacia tortilis	1,74	0,26	0,07	0,20	6,8
Acacia nilotica	1,52	0,26	0,06	0,28	5,9
Acacia senegal	1,75	0,27	0,09	0,30	6,3
Prosopis juliflora	1,73	0,24	0,08	0,28	7,1

été répétés dans trois blocs expérimentaux. Au total 78 échantillons ont été prélevés sous chaque espèce. Ces échantillons ont été étudiés pour déterminer l'intensité de l'infection des racines par les champignons mycorhiziens présents dans le sol de Thiénaba et dénombrer les spores présentes.

Détermination du potentiel mycorhizien du sol

Une expérience en pots a été conduite en serre pour déterminer le potentiel mycorhizien du sol d'un système agroforestier protégé à la station expérimentale de Thiénaba. 72 échantillons au total ont été prélevés à l'aide d'une tarière sous A. raddiana, A. nilotica et P. juliflora et placés délicatement dans des sachets en plastique pour éviter leur perturbation. Les prélèvements ont, à chaque fois, été réalisés en deux points distants de 1 m et 5 m de l'arbre et à deux profondeurs, 0-25 cm et 25-50 cm. Ils ont été répétés dans trois blocs, soit six répétitions avec les deux points de prélèvement pour chaque site. Les sols ont été mis ensuite dans des pots en plastique de 225 cm³ placés en serre. Du mil a été semé dans les pots et les plants obtenus ont été élevés pendant quarante jours. La hauteur, la biomasse aérienne, la masse de matière fraîche des racines et l'infection endomycorhizienne des plants de mil ont été évaluées à la récolte.

Estimation de l'infection des racines d'A. raddiana par les CAM

À la fin de l'expérience, les racines fines ont été colorées selon la procédure de PHILLIPS et HAYMAN (1970) modifiée. Ainsi, elles ont été lavées puis placées dans des tubes contenant une solution de KOH à 10 % et autoclavées à 120 °C pendant 10 minutes. Après plusieurs rinçages (au moins trois), les racines ont été recouvertes avec une solution de H_2O_2 à 3 % pendant 10 minutes puis rincées avec de l'eau de robinet. Elles ont été ensuite acidifiées par agitation dans une solution contenant 500 ml de glycérol, 50 ml de HCl à 1 %, 450 ml d'eau et 0,05 % de bleu trypan. L'ensemble a été autoclavé à 120 °C pendant 10 minutes puis mis dans une solution de glycérol acidifié jusqu'à l'observation des racines.

Après coloration, les racines ont été coupées en fragments de 1 cm de long puis montées entre lames et lamelles selon la méthode de GIOVANNETTI et MOSSE

(1980) légèrement modifiée. Vingt fragments de chaque échantillon pris au hasard ont été placés par groupe de cinq sous le microscope. L'infection a été estimée successivement par le pourcentage du nombre de fragments colonisés par les CAM puis par le pourcentage de la longueur effectivement infectée de chaque fragment rapporté à sa longueur totale (intensité de l'infection).

Détermination de la population de spores de CAM

L'extraction des spores des champignons endomycorhiziens a été effectuée selon la méthode du tamisage humide (DANIELS et SKIPPER, 1982). Des échantillons de sols ont été prélevés dans les points les moins perturbés de chaque site à l'aide d'une tarière. Le sol a été séché à l'air libre pendant 5 à 6 heures, puis tamisé avec un tamis de 20 cm de diamètre et 2 mm d'ouverture de maille. Un échantillon de 100 g de ce sol a été prélevé et mélangé avec 400 ml d'eau de robinet dans un erlenmeyer de 1000 ml. Ce mélange sol-eau a été agité pendant 1 minute, puis laissé à décanter pendant 15 secondes. Le surnageant a été filtré à travers un tamis de 20 cm de diamètre à mailles carrées de 45 µm d'ouverture.

Pour optimiser le rendement, cette étape de mise en suspension suivie de tamisage a été répétée au moins trois fois. Les particules de diamètre supérieur à 45 µm retenues dans le tamis ont été récupérées dans des tubes COREX de 25 ml. Ces tubes ont été soumis à une première centrifugation à 1 750 rpm pendant 5 minutes. À l'issue de la première centrifugation, le surnageant et les particules flottantes ont été éliminés. Les spores et les autres particules sédimentées au fond des tubes ont été reprises dans une solution de saccharose à 50 % (p/v). Le mélange « sédiments »-saccharose a été de nouveau centrifugé à 1 750 rpm pendant 15 secondes. Les spores et les particules restées en suspension dans la solution de saccharose ont été récupérées dans un tamis de 10 cm de diamètre et de 45 µm d'ouverture de mailles, puis rincées avec de l'eau de robinet avant d'être transférées dans de petits flacons. Les extraits ainsi obtenus ont été observés à la loupe binoculaire de type Nikon au grossissement 6,3 x 20.

Infection d'A. raddiana par les champignons endomycorhiziens des terres dégradées

À la suite de plusieurs prospections effectuées au nord et au sud du Sahara, vingt-huit échantillons ont été prélevés dont douze en Tunisie et seize au Sénégal. Ces échantillons ont été prélevés soit sous A. raddiana, soit sous d'autres espèces, soit encore en dehors du couvert végétal. Les sols prélevés ont été mélangés à du sable stérilisé à l'autoclave puis répartis dans des sachets en polyéthylène à raison de 3 sachets par échantillon. Des graines d'A. raddiana ont été prétraitées à l'acide sulfurique concentré pendant 30 mn puis trempées dans de l'eau stérile pendant I h avant d'être semées dans les sachets précités. L'arrosage a été effectué régulièrement tous les jours avec de l'eau stérile. Les plants ont été élevés en serre pendant trois mois. L'infection a été estimée selon la procédure décrite supra.

Inoculation de deux provenances d'A. raddiana et de deux espèces de Prosopis par les Rhizobium et CAM dans un sol de pépinière et effet sur la croissance des plantes hôtes

Deux provenances d'A. tortilis subsp. raddiana (Tunisie et Sénégal), Prosopis juliflora et P. chilensis ont été utilisées. Les graines de la provenance tunisienne d'A. raddiana ont été fournies par l'IRA Médenine, et les autres par l'ISRA Dakar. Après désinfection de ces graines par l'acide sulfurique concentré (voir supra), le semis a été réalisé directement dans des sachets plastiques contenant le sol de pépinière à raison d'une graine par sachet. La levée des semences a été bonne, en général. Les caractéristiques du sol de pépinière utilisé sont indiquées dans le tableau II. Afin de comparer les effets de la double inoculation des plants des différentes espèces et provenances sur leur croissance à la fin de leur séjour en pépinière, les plants ont été inoculés par dix-huit souches de Rhizobium à raison de quatre plants par souche. Ces souches de Rhizobium ont été isolées au Laboratoire de microbiologie forestière de l'ISRA à partir des sols prélevés au Sénégal.

Sables grossiers (200 à	Sables fins (50 à	Limon (2 à	Argile (< 2 μm)	Matière org.	pН	С	N total
2 000 µm) (%)	200µm) (%)	50 μm) (%)	(%)	(%)	(KCI)	(%)	(%)
54,3	38,9	2,0	4,3	0,6	7,8	0,35	0,03
C/N	P ₂ O ₅ total (%)	P ₂ O ₅ ass. (%) (Méthode de Olsen-Dabin)	Ca ++ (%)	Mg ++ (%)	K + (%)	Na + (%)	bases totales
9,5	0,021	0,011	9,97	0,53	0,09	0,08	10,67

∇ Tableau II – Caractéristiques physiques et chimiques du sol de pépinière.

Résultats et discussion

Distribution des champignons arbusculaires dans le sol agroforestier de Thiénaba

Environ la moitié (47 %) des racines d'A. raddiana, A. nilotica, A. senegal et P. juliflora observées a été infectée par les CAM (tabl. III). Le pourcentage de racines infectées est cependant plus élevé chez P. juliflora (56 %) et A. senegal (50 %) que chez A. raddiana (44 %) et A. nilotica (39 %).

∇ Tableau III – Infection (%) des racines de quatre légumineuses arborescentes cultive	ées
par des champignons mycorhiziens arbusculaires du sol de Thiénaba.	

Espèces	Distance		Pro	ofondeur (cm)		Moyenne	Moyenne
	(m)	0-25	25-50	50-100	100-200	200-300	partielle (I)	totale (2)
Acacia	1	42	64	57	44	53	52	
raddiana	2,5	42	46	34	40		41	44b
	5	32	47	36	41	1.53	39	
Acacia	4	48	35	39	52	35	42	
nilotica	2,5	36	33	33	35	14-159	34	39b
	5	34	52	35	48	0.00	42	
Acacia	L	68	69	47	44	26	51	
senegal	2,5	64	43	37	24	-	42	50a
	5	74	67	52	37	-	58	
Prosopis	1	77	76	65	61	59	68	
juliflora	2,5	68	54	48	31		50	56a
11/8	5	68	44	39	47	1. (2)	50	
Moyenne	G-MW							
(3)		54,4	52,5	43,5	42,0	43,3		48

- (I) Moyenne par espèce et par distance de prélèvement par rapport au tronc ;
 - (2) Moyenne par espèce et (3) Moyenne par profondeur de prélèvement.
- Dans la dernière colonne, les moyennes suivies de la même lettre appartiennent à un même groupe homogène déterminé par le test de Newman-Keuls (au seuil de 5 %).

Aucune relation n'a été observée entre l'intensité d'infection des racines d'A. raddiana et A. nilotica par les CAM et la profondeur de prélèvement des sols. L'intensité d'infection endomycorhizienne a varié entre 32 et 64 %. Cette intensité d'infection a diminué chez A. senegal et P. juliflora avec la profondeur de prélèvement. Plus de 64 % des racines infectées chez ces espèces ont été prélevées entre 0 et 50 cm de profondeur. Quelle que soit l'espèce concernée, aucune relation n'a été observée entre la distance de prélèvement par rapport au tronc et l'intensité d'infection des racines. Cependant, un plus grand nombre des racines prélevées autour de 1 m des arbres a été infecté (53 %), alors qu'entre 2,5 et 5 m des arbres 42 à 47 % seulement des racines ont été colonisées par les CAM.

Le nombre des spores de CAM extraites du sol de Thiénaba régresse fortement avec la profondeur. En effet, il a été compté en moyenne 248 spores par 100 g de sol sec entre 0 et 25 cm de profondeur, contre seulement 8 spores entre 2 et 3 m de profondeur. En considérant séparément les espèces, le plus grand nombre de spores a été extrait sous *P. juliflora* pour l'ensemble des prélèvements (99 en moyenne) et le plus faible sous *A. senegal* (50 en moyenne) (tabl. IV). Il y a une augmentation du nombre de spores à mesure que l'on s'éloigne de l'arbre. En effet, sur l'ensemble des spores extraites, 23 % l'ont été à 1 m des arbres, 36 % à 2,5 m et 41 % à 5 m. Cette augmentation n'est pas cependant significative.

La plus grande infection endomycorhizienne observée chez A. senegal et P. juliflora peut s'expliquer par la richesse en phosphore total du sol prélevé sous ces deux espèces, comparativement à celui prélevé sous les deux autres espèces. Ce niveau

√ Tableau IV – Répartition du nombre	de spores de champignons mycorhiziens
arbusculaires dans	le sol de Thiénaba

Espèces	Distance			ofondeur (Moyenne	the bound of Papers
	(m)	0-25	25-50	50-100	100-200	200-300	partielle	totale par espèce
Acacia raddiana	1 2,5 5	247 a 281 a 297 a	76 b 63 b 49 b	23 b 21 b 19 b	17 b 11 b 12 b	8 b -	74,2 94,0 94,3	87,5
Acacia nilotica	2,5 5	260 a 250 a 264 a	57 b 34 b 66 b	22 b 11 b 25 b	11 b 10 b 12 b	9 b - -	71,8 76,3 91,8	79,9
Acacia senegal	1 2,5 5	42 a 137 a 207 a	27 ab 60 b 70 b	12 b 14 b 13 b	7 b 7 b 11 b	7 b - -	19,0 54,5 75,3	49,6
Prosopis juliflora	1 2,5 5	242 a 282 a 364 a	76 b 33 b 65 b	24 b 11 b 17 b	15 b 8 b 12 b	7 b - -	72,8 108,5 114,5	98,6
Moyenne		247,8	56,3	17,7	11.1	7,8		

Dans les colonnes, les moyennes suivies de la même lettre appartiennent à un même groupe homogène déterminé par le test de Newman-Keuls (au seuil de 5 %).

de phosphore total (83 à 85 ppm) est relativement faible et n'a pas diminué l'infection comme dans le cas de fortes teneurs (JENSEN et JAKOBSEN, 1980). Le plus faible niveau de P du sol (61 ppm) correspond à la plus faible intensité d'infection (39 %) endomycorhizienne dans cette étude, c'est-à-dire celle d'A. *nilotica*. (tabl. III). Il est à souligner que les résultats sur les relations entre les teneurs en P du sol et l'importance de l'infection endomycorhizienne des plantes croissant sur ce sol ne sont pas toujours concordants. En effet, le taux d'infection peut être réduit aussi bien dans des conditions de teneurs en P très faibles que dans des conditions de teneurs très élevées (KOIDE, 1991).

Bien que faible, le pourcentage d'infection des racines observées (39 à 56 %) est dans les limites des résultats observés pour la plupart des espèces végétales non inoculées des régions semi-arides d'Inde (Mukerji et Kapoor, 1986). L'infectivité des CAM présents dans les sols peut être également évoquée pour expliquer les différences d'infection selon les plantes hôtes et surtout selon les niveaux de prélèvement. En effet, s'il y a une infection plus importante dans les sols prélevés entre 0 et 50 cm sous A. senegal et P. juliflora que dans ceux prélevés plus en profondeur, il n'en est pas de même sous A. raddiana et A. nilotica. Or, les propriétés physiques et chimiques des sols prélevés sous ces légumineuses ne sont pas très différentes. L'infection des racines des plantes hôtes serait ainsi liée plus à l'infectivité des CAM qu'aux propriétés chimiques et physiques des sols de prélèvement, comme l'ont montré d'autres auteurs (KOSKE et HALVORSON, 1981).

L'observation des racines mycorhizées a montré la présence de différentes structures composant les CAM : hyphes, vésicules et arbuscules. La fréquence de ces structures est indépendante des niveaux et des lieux de prélèvement des

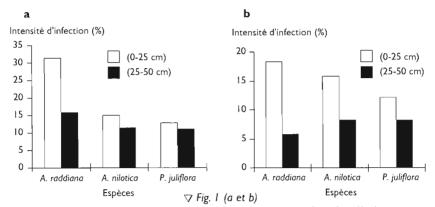
échantillons. Si les hyphes et vésicules ont été présentes dans tous les échantillons, il a été rarement trouvé des arbuscules qui sont considérés comme les principaux sites de passage du phosphore de l'endophyte à la plante hôte (HAYMAN, 1983). Les structures précédentes peuvent dans certaines conditions ne pas être observables. C'est le cas, par exemple, sur les sols entièrement dénudés où aucune végétation n'est présente, après de longues périodes de sécheresse. C'est également le cas quand les racines sont si lignifiées qu'il est pratiquement impossible de distinguer les structures fongiques. Dans ces conditions, les spores demeurent les seules structures attestant de la présence des CAM au champ. Le nombre de spores (248) par 100 g de sol sec trouvé à la surface des sols prospectés (0-25 cm de profondeur) égale en moyenne celui trouvé par MUKERJI et KAPOOR (1986). JENSEN et JAKOBSEN (1980) ont obtenu plus de spores (360 en moyenne) à partir de parcelles expérimentales fertilisées. Par contre, JASPER et al. (1991) ont trouvé dans des sols de forêts, de landes et de pâturages respectivement 19, 10 et 96 spores par 100 g de sol sec. Le nombre de spores serait plus élevé si le sol de Thiénaba était plus argileux avec une teneur en P assimilable plus élevée ou un pH moins acide, comme l'ont suggéré certains auteurs (RATHORE et SINGH, 1995).

Nos résultats concernant les quatre légumineuses étudiées ont montré qu'il n'y a pas de relation entre le nombre de spores et l'intensité d'infection des racines, comme l'ont indiqué plusieurs auteurs (WALKER et MIZE, 1982; MUKERJI et KAPOOR, 1986). En effet, si le plus grand nombre de spores (98) a été trouvé sous *P. juliflora*, qui est aussi l'espèce la plus infectée (56 %), le plus faible nombre de spores (50) a été extrait sous *A. senegal*, pourtant infectée à 50 %. Selon JASPER et al. (1991), la faible relation entre la formation d'endomycorhizes et la quantité de propagules potentiels qu'ils ont isolés est due au fait que ces derniers n'étaient pas toujours viables et que certaines spores seraient à l'état de dormance. D'autres auteurs ont, par contre, trouvé une corrélation convenable dans des conditions souvent contrôlées, entre la population de spores et l'infection des racines (JENSEN et JAKOBSEN, 1980). Dans tous les cas, il est hasardeux de rapprocher l'activité infectieuse des CAM d'un sol donné au nombre de spores présentes dans ce sol. La sporulation peut dépendre de l'espèce de CAM, des caractéristiques du sol et des conditions climatiques.

Les spores isolées appartiennent aux principaux genres suivants : Glomus, Gigaspora, Scutellospora, Acaulospora et Sclerocystis. Le plus grand nombre de spores isolées appartient au genre Scutellospora, en particulier sous A. raddiana. Aucune variation du genre de CAM n'a été constatée en fonction de la distance à l'arbre ou de la profondeur des prélèvements de sol.

Potentiel mycorhizien du sol de Thiénaba

La croissance du mil utilisé comme plante hôte a très peu varié selon les échantillons de sol sur lesquels il a été élevé. Il n'y a pas eu non plus d'effet significatif de la profondeur et de la distance de prélèvement des sols sous A. nilotica et P. juliflora sur la croissance et l'infection endomycorhizienne des jeunes plants de mil (tabl. V et fig. 1). Sous A. raddiana, seule l'infection endomycorhizienne a varié


significativement selon la distance et la profondeur de prélèvement. En effet de 32 % à 1 m de l'arbre, l'infection a diminué jusqu'à 18 % à 5 m pour la profondeur 0-25 cm. Pour la profondeur 25-50 cm, l'infection est passée de 16 à 6 % pour les mêmes distances.

Δ 1	ableau V – Ci	roissance	du mil	cultivé	dans	des so	ols de Tl	hiénaba j	brélevés
S	ous Acacia ra	addiana (Ar), A.	nilotica	(An)	et Pro	osopis	juliflora	(Pj).

Distance (m)	Profondeur (cm)		Hauteur m.plant		100000	nasse aé ng.plant	1,000,000	11.07.02	ls des rac ng.plant	
		Ar	An	Pj	Ar	An	Pj	Ar	An	Pj
l m	0-25	14,2 ab	15,3 ab	13,5 ab	53,3 a	49,5 a	42,5 a	654,7 a	613,3 a	512,5 a
	25-50	11,0 b	10,8 b	12,2 ab	23,3 a	21,5 a	28,0 a	285,0 a	284,7 a	335,0 a
5 m	0-25	15,2 ab	16,0 a	13,8 ab	52,7 a	49,5 a	42,0 a	594,8 a	594,0 a	398,7 a
	25-50	13,0 ab	11,3 ab	12,0 ab	26,7 a	23,8 a	27,0 a	378,0 a	277,7 a	307,8 a

Dans les colonnes, les moyennes suivies de la même lettre appartiennent à un même groupe homogène déterminé par le test de Newman-Keuls (au seuil de 5 %).

Les principales caractéristiques chimiques des échantillons de sol prélevés sont données dans le tableau VI. Étant donné que le bénéfice tiré des CAM par les plantes hôtes est souvent lié à la nutrition minérale de ces dernières (BRUNDRETT, 1991), il est intéressant d'observer les résultats obtenus sur l'infection mycorhizienne en fonction de la teneur des sols en éléments nutritifs. Le niveau des principaux éléments (C, N, P et K) des sols prélevés montre que la fertilité entre 0 et 25 cm de profondeur est légèrement supérieure à celle observée entre 25 et 50 cm. Cette fertilité peut expliquer que la biomasse totale du mil est plus importante au niveau des sols prélevés en surface (fig. 1) ainsi que la stimulation de la capacité des CAM à infecter les racines de la plante hôte. Dans ce dernier cas, la teneur en C de la surface des sols, qui est plus grande que celle observée à 25-50 cm, doit représenter une source supplémentaire disponible pour la nutrition et le fonctionnement des CAM (GRAHAM et al., 1991).

Intensité d'infection (%) des racines du mil inoculé avec des sols prélevés sous différentes espèces d'arbres (a : prélèvement à $I\ m$; b : prélèvement à $5\ m$).

Espèces	Distance	Profondeur	Elé	ments chi	imiques ana	lysés	
	(m)	(cm)	C total (g.kg ⁻¹)	N total (g.kg ⁻¹)	P total (mg.kg ⁻¹)	K total (mg.kg ⁻¹)	C/N
Acacia raddiana	lm	0-25 25-50	1,12 0,83	0,15 0,14	36 33	132 93	7,5 5,9
	5m	0-25 25-50	1,17 0,78	0,13	35 24	190 141	9,0 7,8
Prosopis juliflora	lm	0-25 25-50	0,97 1,09	0,06 0,07	44 28	122 88	16,2 15,6
	5m	0-25 25-50	1,03 0,95	0,14 0,14	41 31	83 107	7,4 6,8
Acacia nilotica	lm	0-25 25-50	1,10 0,89	0,17 0,12	34 29	112 166	6,5 7,4
	5m	0-25 25-50	1,05 0,68	0,16 0,13	34 15	200 176	6,6 5,2

▼ Tableau VI – Caractéristiques chimiques des échantillons de sols prélevés à Thiénaba.

Il est à noter que les pourcentages d'infection obtenus dans cette étude sont très faibles comparés à ceux généralement obtenus par d'autres auteurs tels que PLENCHETTE et al. (1989) qui ont utilisé des sols cinq fois plus riches (N, P et K) que les sols étudiés ici. Ces observations suggèrent la possibilité d'expérimenter l'inoculation des arbres dans le sol de Thiénaba avec des CAM à forte aptitude mycorhizogène, capables de contribuer à l'utilisation optimale des éléments nutritifs destinés aux plantes. La courte durée de l'expérience (40 jours) ajoutée aux basses températures (16-20 °C) relevées pendant la période expérimentale (décembre-janvier) ont probablement ralenti la croissance et l'infection des racines du mil. Il est également probable que la technique de prélèvement et le transport des échantillons de sol ont pu rompre le réseau mycélien des CAM et ainsi réduire le taux d'infection des racines malgré les précautions prises pour minimiser les perturbations de ces échantillons.

Diminution de l'infection endomycorhizienne d'A. raddiana dans les terres dégradées

Les piégeages effectués à partir des 28 échantillons de sols utilisés ont montré que les zones prospectées contenaient toutes des champignons endomycorhiziens capables d'infecter les racines d'A. raddiana. Cette infection ne dépend ni des caractéristiques pédo-climatiques des zones prospectées, ni du couvert végétal sous lequel ont été prélevés les sols. Par contre, les perturbations du milieu semblent réduire l'infection endomycorhizienne des plantes hôtes (POWELL, 1980; MOORMAN et REEVES, 1979; ALLEN et ALLEN, 1981; HABTE, 1989; CUENCA et LOVERA, 1992).

Huit des seize échantillons de sol prélevés au Sénégal contenaient des CAM capables d'infecter au moins 50 % des racines de la plante hôte (tabl.VII). Ces sols

ont été prélevés dans des zones géographiques très différentes du point de vue édaphique (humidité, pH, teneur en N, P et en sels du sol) (tabl.VIII). Par ailleurs, un même sol peut renfermer des CAM infectant A. raddiana avec des pourcentages différents (15 et 31 %). Sept des douze sols prélevés en Tunisie renfermaient des CAM infectant la plante hôte à plus de 75 % (tabl. IX). Pourtant leurs zones d'origine sont très distantes et leurs caractéristiques différentes les unes des autres.

√ Tableau VII – Intensité d'infection (I) des racines d'A. raddiana cultivé dans des sols du Sénégal.

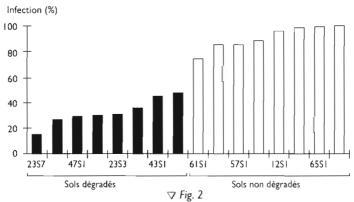
Sols	2357	1451	4751	SISI	2353	2755	4351	1653
1 (%)	15 d	27 cd	29 cd	30 cd	31 cd	36 cd	45 c	48 c
Sols	6151	5251	5751	3651	1251	4851	6581	6051
I (%)	75 b	85 a	85 a	88 a	96 a	98 a	99 a	100 a

Les moyennes suivies de la même lettre appartiennent à un même groupe homogène déterminé par le test de Newman-Keuls (au seuil de 5 %).

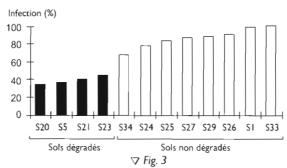
√ Tableau VIII – Caractéristiques physiques et chimiques des sols prélevés au Sénégal.

Sols	125	145	165	235	275	485	515	525	57S	605	65S
pH (KCI)	4,6	6,1	8,7	5,6	4,5	3,9	4,7	4,1	5,0	6,9	8,4
C (%)	2,19	2,42	1,19	4,01	2,87	6,20	5,55	6,21	14,42	8,27	3,21
N (%)	0,29	0,29	0,15	0,47	0,27	0,54	0,51	0,61	1,07	0,79	0,46
Pt (ppm) EC*	197	108	137	218	47	101	86	112	118	121	782
(mS20 °C)	0,055	0,041	0,055	0,036	0,016	0,022	0,023	0,025	0,032	0,132	0,136

^{*} Conductivité électrique à l'extrait 1/5.


√ Tableau IX – Intensité d'infection (I) des racines d'A. raddiana cultivé dans douze sols de Tunisie.

Sols	S20	S5	S21	S23	S34	S24	S25	S27	S29	S26	SI	S 33
1 (%)	35 d	37 d	40 d	45 d	68 c	78 bc	84 bc	87 bc	88 bc	91 ab	99 a	100 a

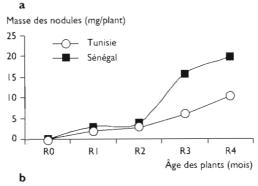

Les moyennes suivies de la même lettre appartiennent à un même groupe homogène déterminé par le test de Newman-Keuls (au seuil de 5 %).

Concernant le couvert végétal, les sols tels que 12S1 et 65S1 prélevés au Sénégal sous A. nilotica et A. raddiana ont entraîné pratiquement les mêmes pourcentages d'infection (96 et 99 % respectivement). Les sols prélevés en Tunisie sous Retama raetam (S5) contenaient des CAM qui ont infecté A. raddiana avec des taux variant entre 37 et 97 %. Soulignons que les sols prélevés sous la plante hôte, A. raddiana, n'ont pas toujours été à l'origine des plus fortes infections.

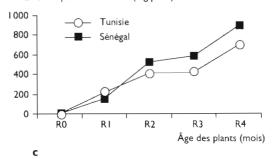
L'effet des perturbations du milieu sur l'infection endomycorhizienne a été montré à partir des sols prélevés aussi bien au nord qu'au sud du Sahara. Les sols du Sénégal qui ont été à l'origine des plus faibles infections endomycorhiziennes (< 50 %) correspondent généralement à ceux qui ont été les plus soumis à l'occupation humaine, à l'érosion éolienne ou hydrique forte. Par contre, les sols protégés, les anciennes jachères, les zones forestières, les stations expérimentales ou tout simplement les zones délaissées par les populations présentaient au moins 75 % d'infection racinaire (fig. 2). Les sols de Tunisie soumis à une forte érosion éolienne, les dunes sahariennes, les sols perturbés par l'occupation humaine et les versants érodés des Matmatas ont été à l'origine des infections endomycorhiziennes les plus faibles (35 à 45 %). Au niveau des zones non ou peu perturbées comme les parcs, les sols sous couvert arboré et l'oasis de Gabès, les CAM ont infecté entre 78 et 100 % des racines d'A. raddiana (fig. 3). La faible infectivité des CAM des zones érodées peut aussi s'expliquer par la perte des surfaces arables où ont lieu la plupart des activités biologiques (POWELL, 1980). La diminution des populations mycorhiziennes peut non seulement entraîner une faible infection racinaire, mais également perturber la bonne croissance des plantes hôtes (MOORMAN et REEVES, 1979). De même, nous avons pu observer que certaines pratiques culturales pouvaient altérer l'infection par les CAM, comme l'ont souligné aussi certains auteurs (ABBOTT et ROBSON, 1991).

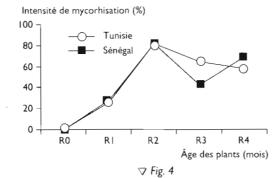
Infection endomycorhizienne d'Acacia raddiana à partir des sols du Sénégal.

Infection endomycorhizienne d'Acacia raddiana à partir des sols de Tunisie.


Le mécanisme de la perte ou de la diminution de l'infection des racines n'est pas très clair. Il peut être dû soit à une destruction physique des propagules des CAM, soit au fait que les perturbations du sol exposent ces derniers aux conditions de sol défavorables à leur germination ou à la colonisation des racines par leur mycélium (JASPER et al., 1987; JASPER et al., 1989 a). La destruction des propagules peut entraîner, par exemple, une rupture des hyphes conduisant à une diminution de l'absorption de phosphore (FAIRCHILD et MILLER, 1988) chez le maïs. Certains échantillons de sol ont été prélevés dans des endroits très secs. Malgré cela, les CAM présents dans ces endroits ont pu infecter les racines d'A. raddiana comme ceux issus d'endroits relativement plus humides. Cette observation montre que certains CAM peuvent garder leur pouvoir infectieux quand le sol devient sec, comme l'ont constaté JASPER et al. (1989 b).

Dans les programmes de réhabilitation, il est important de réintroduire des plants capables de s'associer rapidement à des CAM pour rétablir l'équilibre de l'écosystème végétal. La présence de plantes herbacées peut favoriser le développement d'un grand nombre de racines mycorhizées et de spores de CAM dans le sol, constituant ainsi une réserve de propagules. Étant donné que, dans le sol, les CAM prolifèrent surtout grâce à la croissance du mycélium externe qui passe d'une racine infectée à une racine non infectée (WARNER et MOSSE, 1983), les racines mycorhizées de ces plantes herbacées constituent un inoculum potentiel pour les arbres transplantés au champ. Il a été montré que l'infectivité des CAM est généralement moins affectée par les perturbations du sol lorsque ce dernier renferme un grand nombre de spores et de racines mycorhizées (JASPER et al., 1991).


La perte des propriétés physiques et chimiques est souvent évoquée pour caractériser l'état de dégradation des sols, surtout dans les régions tropicales. Étant donné le rôle qu'ils jouent dans l'établissement et le fonctionnement de la plante, les micro-organismes en général et les CAM en particulier doivent être pris en compte dans cette caractérisation. Dans le cas d'une réhabilitation avec des légumineuses, il est important de compléter la réintroduction des CAM par celle de *Rhizobium* appropriés. Le nombre et la qualité de ces derniers peuvent être affectés aussi par certains facteurs de dégradation (HABTE et EL-SWAIFY, 1991).


Effet de l'inoculation par les Rhizobium sur deux provenances d'Acacia raddiana

Les piégeages effectués avec A. raddiana Tunisie et A. raddiana Sénégal ont donné des résultats semblables concernant la nodulation, la mycorhization et la production de biomasse aérienne (fig. 4). La nodulation des plants a commencé dès le premier mois de séjour en serre avec cependant très peu de nodules par plant (1 à 2 mg). Le poids des nodules a augmenté progressivement pour atteindre plus de 10 mg par plant avec les deux provenances à la fin de l'expérience. L'intensité de mycorhization des plants a été pratiquement identique d'une provenance d'A. raddiana à l'autre. Le pourcentage d'infection des racines a atteint 64 à 69 %, en fin d'expérience. Le poids des parties aériennes est passé de 152 mg à 900 mg par plant avec A. raddiana Sénégal, et de 216 mg à 700 mg avec A. raddiana Tunisie.

Masse des parties aériennes (mg/plant)

Variation du poids des nodules (a), du poids des parties aériennes (b) et de l'intensité de mycorhisation (c) de deux provenances d'Acacia raddiana.

Les tests d'inoculation de *Rhizobium* effectués sur les mêmes provenances d'A. *raddiana* et aussi sur *P. juliflora* et *P. chilensis* à partir du sol de pépinière non stérilisé ont donné des résultats très variables selon les facteurs étudiés :

• Nodulation : l'effet de l'inoculation sur la nodulation a été évalué en mesurant le poids sec des nodules récoltés à la fin de l'expérience. D'une manière générale, très peu de souches de *Rhizobium* ont entraîné une nodulation supérieure à celle obtenue avec les plants non inoculés. Sur l'ensemble des souches utilisées, le poids sec des nodules obtenus avec *A. raddiana* était plus faible (19 à 22 en moyenne par plant) que celui observé avec *Prosopis* (79 à 141). D'autre part, ce poids était à peu près le même chez les deux provenances d'A. *raddiana* (tabl. X).

▽ Tableau X – Matière sèche (mg) de nodules par plant de quatre légumineuses arborescentes inoculées avec dix-huit souches de Rhizobium.

Plantes hôtes								So	uches c	e Rhize	obium									
	GPI	GP2	GP27	GP39	GP47	GP49	GPa49	Pa20	Pa44	Pc45	Pj34	Pj36	Pj37	Pj38	Pj39	Pj41	Pj42	Pj43	Т	Moy.
Prosopis juliflora	142	131	239	161	64	190	157	205	85	231	150	137	167	83	117	102	135	76	112	141
Prosopis chilensis	99	63	108	52	80	65	70	100	66	75	89	101	82	100	53	75	57	60	110	79
Acacia raddiana « Sénégal »	44	21	21	24	16	12	16	10	28	9	34	21	9	12	14	30	29	35	30	22
Acacia raddiana « Tunisie »	32	6	15	22	15	19	6	18	16	22	38	21	22	25	21	8	3	31	15	19

(T : témoin non inoculé).

▽ Tableau XI – Activité réductrice d'acétylène (ARA) en nmoles de C₂H₂ par heure et par plant de quatre légumineuses arborescentes inoculées avec dix-huit souches de Rhizobium.

Plantes hôtes								Soi	uches d	le Rhiz	obium	1								
	GPI	GP2	GP27	GP39	GP47	GP49	GPa49	Pa20	Pa44	Pc45	Pj34	Pj36	Pj37	Pj38	Pj39	Pj41	Pj42	Pj43	Т	Moy.
Prosopis juliflora	1 805	1 355	363	218	963	578	262	752	229	284	I 850	3 374	480	66	1213	850	1 622	539	809	927
Prosopis chilensis	389	330	894	458	364	301	567	375	355	811	820	376	902	471	414	575	681	393	809	541
Acacia raddiana « Sénégal »	253	35	122	113	116	145	35	58	17	61	87	209	46	34	61	109	131	157	65	98
Acacia raddiana « Tunisie »	70	41	61	140	66	153	81	122	221	87	128	52	64	122	157	128	88	144	70	105

(T : témoin non inoculé).

▽ Tableau XII – Masse de matière sèche (g/plant) des parties aériennes de quatre légumineuses arborescentes inoculées avec dix-huit souches de Rhizobium.

Plantes hôtes								Soi	uches d	e Rhize	bium									
	GPI	GP2	GP27	GP39	GP47	GP49	GPa49	Pa20	Pa44	Pc45	Pj34	Pj36	Pj37	Pj38	Pj39	Pj41	Pj42	Pj43	Т	Moy.
Prosopis juliflora	3,2	3,2	3,0	2,2	2,4	2,7	2,7	3,1	2,5	3,3	3,0	3,3	2,9	1,8	2,6	2,4	3,0	2,5	3,4	2,8
Prosopis chilensis	4,4	3,2	3,9	3,0	3,8	3,2	3,8	3,4	3,6	3,7	3,8	3,6	3,4	3,9	3,7	3,1	3,9	3,8	3,5	3,6
Acacia raddiana « Sénégal »	1,5	1,1	1,6	1,7	1,1	1,2	1,1	0,9	1,7	1,3	1,0	1,3	1,3	0,8	1,6	1,3	2,0	1,7	2,0	3,4
Acacia raddiana « Tunisie »	2,0	1,5	1,9	2,1	1,7	1,6	0,9	1,6	0,8	1,5	1,8	1,9	2,3	1,7	1,8	0,7	1,4	2,1	1,3	1,6

(T : témoin non inoculé).

▽ Tableau XIII – Masse de matière fraîche des racines (g/plant) de quatre légumineuses arborescentes inoculées avec dix-huit souches de Rhizobium.

Plantes hôtes								Soi	uches d	e Rhize	bium									
	GPI	GP2	GP27	GP39	GP47	GP49	GPa49	Pa20	Pa44	Pc45	Pj34	Pj36	Pj37	Pj38	Pj39	Pj41	Pj42	Pj43	Т	Moy.
Prosopis juliflora	3,5	5,0	6,8	4,9	4,5	4,9	5,4	4,0	4,1	5,2	4,3	3,5	4,3	3,2	4,5	4,0	5,3	3,9	3,4	4,5
Prosopis chilensis	9,3	7,4	9,2	6,1	6,8	7,3	7,4	8,02	6,8	8,4	8,5	8,7	6,9	7,7	8,3	5,9	8,7	8,2	6,4	7,7
Acacia raddiana « Sénégal »	3,4	3,0	4,6	4,3	2,8	4,5	3,3	2,9	4,8	3,7	3,4	2,7	3,7	2,8	2,9	3,4	4,1	4,0	4,5	3,6
Acacia raddiana « Tunisie »	5,1	4,4	4,9	4,0	4,0	4,5	4,0	4,4	3,3	4,0	3,8	4,6	5,6	4,5	3,5	3,5	3,8	5,1	4,4	4,3

(T: témoin non inoculé).

√ Tableau XIV – Intensité de mycorhization (%)
par plant de quatre légumineuses arborescentes inoculées avec dix-huit souches de Rhizobium.

Plantes hôtes								So	uches c	le Rhize	bium									
	GPI	GP2	GP27	GP39	GP47	GP49	GPa49	Pa20	Pa44	Pc45	Pj34	Pj36	Pj37	Pj38	Pj39	Pj41	Pj42	Pj43	Т	Moy.
Prosopis juliflora	48	56	52	60	66	46	40	59	50	50	41	51	56	66	49	49	64	54	55	53
Prosopis chilensis	92	86	84	90	76	79	84	73	71	61	76	68	59	71	79	83	85	68	63	76
Acacia raddiana « Sénégal »	65	83	47	48	71	52	43	56	48	57	79	77	56	53	76	77	56	68	63	62
Acacia raddiana « Tunisie »	78	44	48	40	53	49	57	61	44	47	43	48	48	39	65	64	66	51	40	52

(T : témoin non inoculé).

- Fixation d'azote : l'activité réductrice d'acétylène (ARA) a été à peu près la même pour les deux provenances d'A. raddiana si l'on considère la moyenne obtenue avec l'ensemble des souches de Rhizobium. En effet, de 98 nmoles de C₂H₂ par plant pour A. raddiana Sénégal, on est passé à 105 nmoles pour A. raddiana Tunisie. Ces valeurs sont au moins cinq fois plus faibles que celles obtenues avec P. chilensis (541 nmoles) et neuf fois plus faibles que celles obtenues avec P. juliflora (927 nmoles) (tabl. XI).
- Biomasse aérienne : les moyennes des masses de matière sèche des parties aériennes des deux provenances d'A. raddiana ont été respectivement 1,37 g pour celle du Sénégal et 1,61 g pour celle de Tunisie. Elles ont été plus faibles que celles obtenues aussi bien avec *P. juliflora* (2,8 g) qu'avec *P. chilensis* (3,6 g) (tabl. XII).
- Biomasse des racines : pour l'ensemble des souches de *Rhizobium*, *P. chilensis* a montré une prolifération de racines plus importante (7,7 g par plant en moyenne) que celle observée pour les autres espèces. *A. raddiana* Sénégal présentait un poids racinaire moindre (3,6 g) que *A. raddiana* Tunisie (4,3 g) et *P. juliflora* (4,5 g) (tabl. XIII).
- Mycorhization : l'expérience a montré que le sol de pépinière utilisé contenait des champignons endomycorhiziens capables d'infecter les racines des quatre légumineuses étudiées (tabl. XIV). L'intensité de mycorhization des racines a ainsi dépassé 50 %. Les plants les plus mycorhizés ont été en général ceux de *P. chilensis* (76 %) suivis de ceux d'A. raddiana Sénégal (62 %).

Les deux provenances d'A. raddiana peuvent être considérées comme équivalentes en ce qui concerne leur aptitude à s'associer aux micro-organismes du sol. En effet, elles ont montré une nodulation et une endomycorhization très proches à partir du sol de pépinière utilisé. Ce sol contient une ou plusieurs souches de Rhizobium capables de les noduler dès le premier mois de leur culture. Les courbes de nodulation de ces provenances obtenues lors des piégeages sont pratiquement identiques. De même, le sol de piégeage contient des CAM capables d'infecter les racines des deux provenances avec pratiquement le même pourcentage (26 à 69 %), même si le développement de l'infection mycorhizienne dépend du temps de séjour des plantes dans le sol (PUPPI et RIESS, 1987). Si le taux de mycorhization est relativement faible après un mois de séjour en pépinière, il dépasse rapidement celui rencontré habituellement chez les arbres adultes d'A. raddiana au champ. Par exemple, INGLEBY et al. (1996) ont trouvé un taux de mycorhization de 31 % chez A. raddiana âgé de 10 ans. Cependant, selon certains travaux, il n'est pas nécessaire que le niveau d'infection soit très élevé pour être bénéfique à la plante, au moins dans les régions semi-arides. MOORE (1988) a montré qu'au-delà de 12 % de colonisation, les avantages tirés par la plante hôte ne sont plus sensibles. Contrairement à la nodulation et à la mycorhization, la biomasse aérienne obtenue au cours du piégeage est légèrement différente selon les provenances d'A. raddiana. Elle était en moyenne de 541 mg par plant pour la provenance sénégalaise et de 445 mg pour la provenance tunisienne.

L'inoculation avec les différentes souches de *Rhizobium* a confirmé les réponses très proches des deux provenances d'A. *raddiana* à l'association avec les symbiotes du sol de pépinière. C'est ainsi que la masse des nodules, des parties aériennes

et des racines, l'activité réductrice d'acétylène et l'intensité de mycorhization des provenances ont été pratiquement les mêmes. Les masses des nodules et des parties aériennes et l'activité fixatrice d'azote des provenances d'A. raddiana ont été inférieures à celles des deux espèces de *Prosopis* étudiées. Elles ont été inférieures également à celles trouvées par CORNET et DIEM (1982) chez A. raddiana cultivé sur sol stérile. La masse des racines et l'intensité de mycorhization d'A. raddiana ont été toutes proches de celles de *P. juliflora* mais inférieures à celles de *P. chilensis*.

Il est à noter que dans la plupart des traitements, la nodulation et la fixation d'azote n'ont pas été différentes de celles des plants non inoculés. Cela peut être attribué soit à l'ineffectivité des souches de *Rhizobium*, soit à leur manque de compétitivité vis-à-vis des souches du sol de pépinière. De plus, les multiples interactions entre les micro-organismes du sol peuvent modifier la réponse des plantes hôtes à l'inoculation (INGHAM et MOLINA, 1991). Une meilleure réponse à l'inoculation par *Rhizobium* pourrait être obtenue avec une inoculation supplémentaire de CAM. En effet, des CAM effectifs peuvent augmenter la croissance des jeunes plants en améliorant significativement leur nodulation, leur ARA et leur concentration en éléments nutritifs tels que le phosphore et l'azote (DE LA CRUZ et al., 1988).

Le gain de croissance est encore plus intéressant dans le cas où l'inoculation a lieu dans des sols dégradés ou déficients en phosphore (JASPER et al., 1989 a ; KOIDE, 1991) ou en conditions de stress hydrique (MICHELSEN et ROSENDAHL, 1990). Néanmoins, soulignons que les besoins en inoculation des plantes hôtes varient et qu'ils doivent être prouvés avant toute recommandation dans ce sens (HABTE et TURK, 1991).

Conclusion

L'étude sur l'écologie des champignons endomycorhiziens a montré que leur distribution spatiale varie selon le type de propagules considéré. Aucune relation n'a été observée entre l'intensité d'infection des racines d'A. raddiana et A. nilotica par les CAM et la profondeur de prélèvement des sols. Par contre, cette intensité d'infection a diminué chez A. senegal et P. juliflora avec la profondeur. Aucune relation n'a été observée cependant entre la distance de prélèvement par rapport au tronc et l'intensité d'infection des racines quelle que soit l'espèce concernée. Le nombre de spores de CAM extrait du sol de Thiénaba régresse fortement avec la profondeur. De 248 spores par 100 g de sol sec prélevé entre 0 et 25 cm, ce nombre est tombé à 8 spores entre 2 et 3 m. Le plus grand nombre de spores a été extrait sous P. juliflora et le plus faible sous A. senegal. Il y a une augmentation du nombre de spores à mesure que l'on s'éloigne de l'arbre.

L'effet des perturbations du milieu sur l'infection endomycorhizienne a été montré à partir des sols prélevés aussi bien au nord qu'au sud du Sahara. Cette infection

ne dépend ni des caractéristiques géoclimatiques des zones prospectées, ni du couvert végétal sous lequel ont été prélevés les sols. Par contre, la dégradation du milieu réduit l'infection des plantes hôtes par les CAM.

Les tests d'inoculation par *Rhizobium* et l'étude de l'infection endomycorhizienne effectués en pépinière sur *P. juliflora, P. chilensis* et les provenances de Tunisie et du Sénégal d'A. *raddiana*, ont donné des résultats très variables selon les facteurs étudiés. Les deux provenances d'A. *raddiana* peuvent être cependant considérées comme équivalentes en ce qui concerne leur aptitude à s'associer aux microorganismes du sol. En effet, elles ont montré une nodulation et une endomycorhization très proches du début à la fin de leur croissance en pépinière.

Dans les programmes de réhabilitation des terres dégradées, il est important de réintroduire des plantes capables de s'associer rapidement à des CAM pour rétablir l'équilibre de l'écosystème végétal. La présence de plantes herbacées peut favoriser le développement d'un grand nombre de racines mycorhizées et de spores de CAM dans le sol, constituant ainsi une réserve de propagules.

Auteurs

O. Diagne

Institut sénégalais de recherches agricoles, DRPF, BP 2312, Dakar, Sénégal

K. Ingleby

Centre for Ecology and Hydrology, Bush Estate, Penicuick, Midlothian, EH26 0QB, UK

Références bibliographiques

ABBOTT L. K., ROBSON A. D.,

1991 – « Field management of VA mycorrhizal fungi ». In Keister D. L., Cregan P. B., eds: The rhizosphere and plant growth: 335-362.

ALLEN M. F., BOOSALIS M. G.,

1983 – Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat.

New Phytol., 93:67-76.

ALLEN O. N., ALLEN E. K.,

1981 – The leguminosae: a source Book of Characteristics, Uses, and Nodulation. Madison, University of Wisconsin Press, 812 p.

BÂ A. M., DALPE Y.,

Guissou T.,

1996 – Les glomales d'Acacia holosericea et d'Acacia mangium. Bois et Forêts des Tropiques, 250 : 5-18.

BAREA J. M.,

1991 – Vesicular-arbuscular mycorrhizae as modifiers of soil fertility.

Advances in Soil Science, 15: 1-40.

BRUNDRETT M.,

1991 – « Mycorrhizas in natural ecosystems ». In Begon M., Fitter A. H, eds: Advances in Ecological Research, London, A. Macfadyen, Academic Press. 21: 171-313.

CORNET F., DIEM H. G.,

1982 – Étude comparative de l'efficacité des souches de Rhizobium d'Acacia isolées de sols du Sénégal et effet de la double symbiose Rhizobium-Glomus mosseae sur la croissance de Acacia holosericea et Acacia raddiana.

Bois et Forêts des Tropiques, 198 : 3-15.

CUENCA G., LOVERA M.,

1992 – Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. *Can J. Bot.*, 70: 73-79.

DANIELS B.A., SKIPPER H.D.,

1982 – « Methods for the recovery and quantitative estimation of propagules from soil ». In Schenk N. C., ed.: Methods and principles of mycorrhizal research, St Paul, Minnesota, American Phytopathological Soc.: 37-45.

DE LA CRUZ R. E., MANALO M. Q., AGGANGAN N. S., TAMBALO J. D.,

1988 – Growth of three legume trees inoculated with VA mycorrhizal fungi and Rhizobium. Plant and Soil, 108: 111-115.

DUCHESNE L. C.,

1993 — « Ectomycorrhizal fungi and the control of root diseas ». In: Mycorrhiza News. Quaterly newsletter of Mycorrhiza Network, Asia, New Delhi, India, Tata Energy Research Institute, 5 (2): 1-5.

FAIRCHILD G. S., MILLER M. H.,

1988 – Vesicular-arbuscular mycorrhizas and the soil-disturbance induced reduction of nutrient absorption in maize. II. Development of the effect New Phytol., 110:75-84.

GIOVANNETTI M., MOSSE B.,

1980 – An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots.

New Phytol., 84: 489-500.

GRAHAM J. H., EISSENSTAT D. M., DROUILLARD D. L.,

1991 – On the relationship between a plant's mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. *Functional Ecology*, 5:773-779.

Навте М.,

1989 – Impact of simulated erosion on the abundance and activity of indigenous vesicular-arbuscular mycorrhizal endophytes in an oxisoil. *Biol. Fertil. Soils*, 7:164-167.

HABTE M., EL-SWAIFY S.A.,

1991 – Abundance and Activity of Indigenous Rhizobial Populations in an Oxisoil Subjected to Simulated Erosion. Arid Soil Research and Rehabilitation. 5: 155-165.

HABTE M., TURK D.,

1991 – Response of two species of Cassia and Gliricidia sepium to vesicular-arbuscular mycorrhizal infection. Commun. Soil Sci. Plant Anal., 22 (17-18): 1861-1872.

HABTE M., AZIZ T., YUEN J. E.,

1992 – Residual toxicity of soil-applied chlorothalonil on mycorrhizal symbiosis in Leucaena leucocephala.

Plant and Soil, 140: 263-268.

HARRIS D., PAUL E.A.,

1987 – « Carbon requirements of vesicular-arbuscular mycorrhizae ». In Safir G. R., ed.: Ecophysiology of VA Mycorrhizal Plants, CRC Press, Boca Raton, FL, USA: 93-106.

HAYMAN D. S.,

1983 – The physiology of vesiculararbuscular mycorrhizal symbiosis. *Can. J. Bot.*, 61:944-963.

INGHAM E. R., MOLINA R.,

1991 – « Interactions among mycorrhizal fungi, rhizosphere organisms and plants ». In Barbosa P., Krischik Vera A., Jones C. G., eds: Microbial Mediation of Plant-Herbivore-Interactions: 169-197.

INGLEBY K., DIAGNE O., DEANS J. D., LINDLEY D. K., NEYRA M., DUCOUSSO M.,

1996 – Distribution of roots, arbuscular mycorrhizal colonization and spores around fast-growing tree species in Senegal. Forest Ecology and Management, 90: 19-27.

JANOS D. P.,

1987 — « Mycorrhiza applications in tropical forestry: are temperate zone approaches appropriate? » In: Trees and Mycorrhiza, Proceedings of the Asian Seminar, Kuala Lumpur, 13-17 April 1987, Ed. F. S. P. Ng: 133-188.

JASPER D. A., ABBOTT L. K., ROBSON A. D.,

1987 – The effect of surface minning on the infectivity of vesicular-arbuscular mycorrhizal fungi. Aust. J. Bot., 35:641-652.

JASPER D. A., ABBOTT L. K., ROBSON A. D.,

1989 a – Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol, 112: 93-99.

JASPER D. A., ABBOTT L. K., ROBSON A. D.,

1989 b — Hyphae of a vesicular-arbuscular mycorhizal fungus maintain infectivity in dry soil, except the soil is disturbed. *New Phytol.*, 112:101-107.

JASPER D. A., ABBOTT L. K., ROBSON A. D.,

1991 – The effects of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. *New Phytol.*, 118: 471-476.

JAYACHANDRAN K., SCHWAB A. P., HETRICK B. A. D.,

1992 – Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi.

Soil. Biol. Biochem., 24 (9): 897-903.

JENSEN A., JAKOBSEN I.,

1980 – The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. *Plant and Soil*, 55: 403-414.

KOIDE T.,

1991 – Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol., 117:365-386.

KOSKE R. E., HALVORSON W. L.,

1981 – Ecological studies of vesicular-arbuscular mycorrhizae in a barrier sand dune. Can. J. Bot., 59: 1413-1422.

LAHEURTE F., BERTHELIN J.,

1986 - « Influence of endomycorrhizal infection by Glomus mosseae on root exudation by maize ». In Gianinazzi-Pearson V., Gianinazzi S., eds: Physiological and Genetical Aspects of Mycorrhizae, Paris, France, Institut national de la recherche agronomique: 426-429.

LE TACON F., GARBAYE J., CARR G.,

1987 – « The use of mycorrhizas in tropical forests ». In: Trees and mycorrhiza, Proceedings of the Asian Seminar, 13-17 April 1987, Kuala Lumpur, Ed. F. S. NGP.: 15-32.

MARX D.,

1969 – The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infection. *Phytopathology*, 59: 153-163.

MICHELSEN A., ROSENDAHL S.,

1990 – The effect of VA mycorrhizal fungi phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant and Soil, 124: 7-13.

MOORE J. C.,

1988 – Plant succession in semiarid grasslands and response to mycorrhizal colonization. Abstracts Ecological Society of America Meeting, Davis, CA, USA, 312 p.

MOORMAN T., REEVES B.,

1979 – The rôle of endomycorrhizae in revegetation practices in the semi-arid west. II. A bioassay to determine the effect of land disturbance on endomycorrhizal populations. *Amer. J. Bot.*, 66 (1):14-18.

MUKERJI K. G., KAPOOR A.,

1986 – Occurrence and Importance of Vesicular- Arbuscular Mycorrhizal Fungi in Semi-arid Regions of India. Forest Ecology and Management, 16:117-126.

NELSON C. E.,

1987 – « The water relations of vesicular arbuscular mycorrhizal systems ». In Safir G. R., ed: Ecophysiology of VA Mycorrhizal Plants, Boca Raton, CRC Press: 71-92.

PHILLIPS J. M., HAYMAN D. S.,

1970 – Improved procedures for clearing and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection.

Trans. Br. Mycol. Soc., 55: 158-161.

PLENCHETTE C., PERRIN R., DUVERT P.,

1989 – The concept of soil infectivity and a method for its determination as applied to Endomycorrhizas. *Can. J. Bot.*, 67: 112-115.

POWELL C.,

1980 – Mycorrhizal infectivity of eroded soils. Soil Biol. Biochem., 12: 247-250.

PUPPI G., RIESS S.,

1987 – Role and Ecology of VA Mycorrhizae in Sand Dunes, Angew. *Botanik*, 61:115-126.

RATHORE V. P., SINGH H. P.,

1995 – Quantification and correlation of vesicular-arbuscular mycorrhizal propagules with soil properties of some mollisols of northern India. *Mycorrhiza*, 5: 201-203.

REEVES B. F.,

1987 – « Mineral nutrition, mycorrhizal fungi and succession in semi-arid environments ». In: Trees and Mycorrhiza, proc. of the Asian Seminar, 13-17 April 1987, Kuala Lumpur, Ed. FSP Ngp: 33-50.

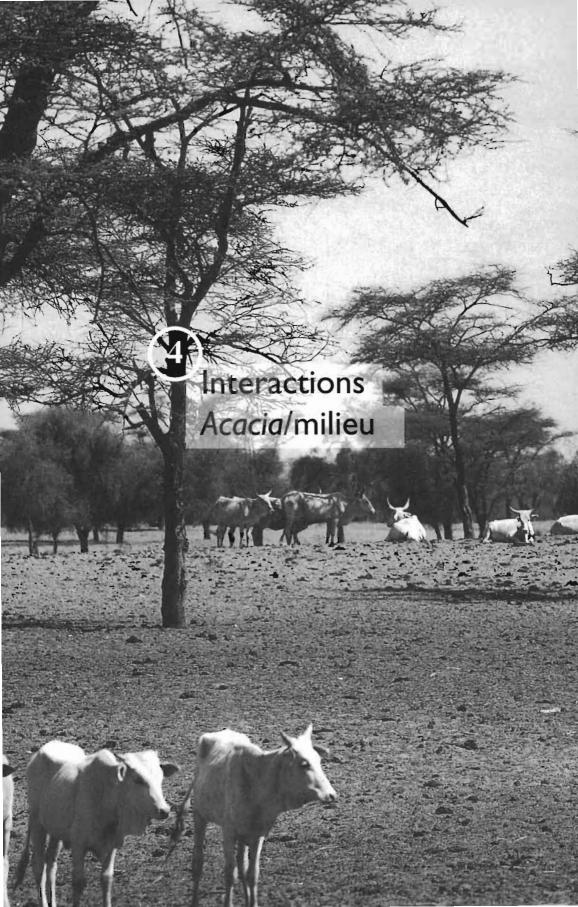
SHARMA M., GAUR A., BHATIA N. P., ADHOLEYA A.,

1996 – Growth responses and dependence of *Acacia nilotica* var. Cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. *Mycorrhiza*, 6:441-446.

SIEVERDING E.,

1991 – Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Federal Republic of Germany, Eschborn GTZ, 371 p.

WALKER C., MIZE C.W.,


1982 – Population of endogonaceous fungi at two locations in Central Iowa. *Can. J. Bot.*, 60: 2518-2529.

WARNER A.,

Mosse B.,

1983 – Spread of vesicular-arbuscular mycorrhizal fungi between separates root systems.

Trans. Br. Mycol. Soc., 80: 353-354.

 ▼ Animaux stabulant en saison sèche à proximité d'un puits pastoral dans une savane arborée à Acacia raddiana.
 La strate herbacée est surpâturée (Ferlo, Sénégal).
 © IRD / M. GROUZIS

Activité biochimique de la rhizosphère d'Acacia raddiana au nord et au sud du Sahara

S. GREGO M. C. MOSCATÉLLI E. DI MATTIA S. MARINARI I. CACCIARI

Résumé

Afin de caractériser l'effet rhizosphérique d'Acacia tortilis subsp. raddiana, la biomasse microbienne, sa diversité et son activité métabolique ainsi que l'activité de quelques enzymes impliquées dans le cycle de l'azote et du phosphore ont été comparées dans des sites soumis à l'influence du système racinaire et dans des sites témoins de deux biotopes situés au nord et au sud du Sahara.

Les résultats montrent que presque tous les paramètres suivis sont modifiés par le système racinaire d'Acacia raddiana. Cet effet rhizosphérique varie en fonction de la distance au tronc, de l'âge du peuplement et des conditions trophiques stationnelles. Des différences notables ont été mises en évidence entre les biotopes sénégalais et tunisiens : l'activité métabolique des micro-organismes est largement supérieure dans ces derniers. La sensibilité des bio-indicateurs dans ces milieux extrêmes est par ailleurs discutée.

Mots-clés:

ACACIA TORTILIS SUBSP. RADDIANA, RHIZOSPHÈRE, MICRO-ORGANISMES DU SOL BIO-INDICATEURS, N. P. TUNISIE, SÉNÉGAL, SAHEL

Abstract

In order to test the quality and the characteristics of north and south Saharian soils in the presence of Acacia tortilis subsp. raddiana root system, microbial biomass, microbial respiration, several enzymatic activities, microbial physiological groups and their ammonification-nitrification potential in the rhizosphere were compared with those in a distant zone of soil not influenced by the plant.

Almost all the chemical, biochemical and microbiological parameters were influenced by the Acacia root system. This « rhizosphere effect » can be affected by several variables. Thus, it depends on the distance from the base of the tree, the age of the planting and the local ecological conditions. Noticeable differences were found between the south and the north areas: in these latter the microbial metabolic activities are higher. The bioindicators sensibility in these oligotrophic environments is also discussed.

Keywords:

ACACIA TORTILIS SUBSP RADDIANA, RHIZOSPHERE, SOIL MICRO-ORGANISMS, BIO-INDICATORS, N, P, TUNISIA, SENEGAL, SAHEL

Introduction

La nécessité de développer des recherches sur les indices de qualité des sols a été récemment mise en exergue par DORAN et PARKIN (1994). En effet, la caractérisation de l'état de santé et de qualité des sols à l'aide de bio-indicateurs est très utile dans l'évaluation des caractères de durabilité des sols, des pratiques d'aménagement des terres et des projets de réhabilitation des milieux.

Les processus de désertification conduisent à une chute drastique du potentiel biologique du sol, révélée par la diminution de la teneur en matières organiques et en nutriments du sol ainsi que par l'abaissement des populations de microorganismes et de leurs activités métaboliques.

Le rôle primordial de l'arbre dans la protection des sols, la production de litière et plus globalement dans l'amélioration des conditions édapho-climatiques a été largement démontré: BELSKY et al. (1989), CAMPBELL et al. (1994), GROUZIS et AKPO (1997; cet ouvrage¹) et AKPO (1998). Les racines influencent significativement les caractéristiques biologiques du sol environnant.

La rhizosphère est une zone d'intense activité microbiologique et biochimique en raison de l'exudation de nutriments organiques et minéraux par les plantes. Un « effet rhizosphère » peut ainsi être mis en évidence en comparant entre elles et

I. « Influence d'Acacia raddiana sur la structure et le fonctionnement de la strate herbacée dans le Ferlo sénégalais ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003 : 249-262.

pour certains paramètres (populations de micro-organismes, groupes physiologiques, activité métabolique) des zones situées à proximité des plantes à d'autres qui en sont plus ou moins éloignées (Burns, 1985). La concentration des nutriments du sol et des micro-organismes au voisinage des arbustes et des arbres isolés des écosystèmes arides et semi-arides se traduit par des « îlots de fertilité » (« islands of fertility ») (HERMAN et al., 1995), car ces zones abritent les populations de microorganismes les plus nombreuses et les plus actives.

De récentes études (GROUZIS, 1997) ont mis l'accent sur l'utilisation des légumineuses pérennes et des micro-organismes qui leur sont associés pour la réhabilitation des terres dégradées. En Afrique de l'Ouest et du Nord, des espèces comme Faidherbia albida, Acacia tortilis subsp. raddiana, Acacia senegal, Astragalus armatus, espèces autochtones, largement distribuées et bien adaptées aux conditions climatiques sévères et de pauvreté édaphique, peuvent donc être utilisées. Cependant, les connaissances sur leurs potentialités d'amélioration de la fertilité des sols sont encore éparses, en particulier celles concernant l'influence des racines sur les propriétés biochimiques du sol et sur la diversité des microorganismes.

Les objectifs de ce travail sont donc de suivre quelques paramètres biochimiques et microbiologiques connus pour être des indicateurs sensibles des changements biologiques du sol afin de caractériser l'effet rhizosphère d'*Acacia tortilis* (Forssk.) Hayne subsp. *raddiana* (Savi) Brenan au nord (Tunisie) et au sud (Sénégal) du Sahara.

Matériel et méthodes

Les stations d'études

Au Sénégal, deux stations correspondant à un gradient d'aridité ont été suivies. Il s'agit de la station de Souilène, appartenant à la zone sahélienne sensu stricto (200-400 mm de pluviométrie annuelle) qui est située dans la réserve de Sogobe (Ferlo), et de la station de Dahra, appartenant à la zone soudano-sahélienne (400-600 mm). Elle se trouve dans la zone sylvo-pastorale au-dessous de la vallée sèche du Ferlo (Ferlo-Djoloff).

En Tunisie, deux stations appartenant au même climat régional ont été retenues : la station de Haddej dans la vallée du Bled Talah et les piémonts sud du Djebel Bou Hedma.

Le tableau I synthétise les conditions édapho-climatiques déjà largement décrites par Pontanier et al. (cet ouvrage)². Les deux contextes écologiques, semblables de

 [«] Écologie et régime hydrique de deux formations à Acacia raddiana au nord et au sud du Sahara (Tunisie, Sénégal) ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003 : 79-101.

par leur aridité, présentent des spécificités pour ce qui concerne les conditions régionales : pluies de saison chaude au Sénégal, contrairement aux pluies de saison froide en Tunisie ; déficit hydrique maximal en période hivernale au Sénégal et en période estivale en Tunisie.

Ces conditions engendrent d'ailleurs des types de végétation contrastés : formations dominées par des espèces annuelles au Sénégal et des chaméphytes en Tunisie. Malgré des différences dans le détail (Pontanier et al., cf. note 2), les sols des différentes stations présentent en commun une texture sableuse et une teneur faible en matières organiques.

∇ Tableau I – Caractéristiques écologiques comparées des stations nord- et sud-sahariennes.

Stations	Sahel - Sénégal	Tunisie
Coordonnées géographiques	Souilène : 16° 21' N - 15° 26' W Dahra : 15° 21' N - 15° 26' W	Haddej : 9° 38' N - 34° 30' E Bou Hedma
Précipitations annuelles	Souilène : 280 mm Dahra : 445 mm	220 mm
Variabilité	Forte	Très forte
Régime des précipitations	Pluie de saison chaude	Pluie de saison froide
Évapotranspiration potentielle (ETP)	# 2 000 mm	# 2 500 mm
Climat	Tropical sec sahélien à soudano-sahélien	Méditerranéen aride inférieur
Sol	Brun rouge sub-aride à texture très sableuse, profond, filtrant, bon drainage teneur en matières organiques faible	Peu évolué d'apport alluvial à texture sableuse à sablo-limoneuse, calcaire teneur en matières organiques faible
Disponibilité en eau du sol	Très limitée dans le temps ; zone d'absorption préférentielle à 200-300 cm	Très limitée dans le temps ; plutôt favorable dans les horizons inférieurs
Végétation	Thérophytes et phanérophytes dominants	Steppe à chaméphytes dominants

Échantillonnage

Vingt-six échantillons ont été prélevés en saison sèche dans les deux stations du Sénégal dans la zone rhizosphérique et dans une zone témoin à deux niveaux (0-20 cm et 20-40 cm). Vingt prélèvements ont été effectués dans l'horizon de surface (0-20 cm) des stations tunisiennes.

À Dahra (Sénégal), l'étude de l'influence de la distance au tronc d'un Acacia raddiana a été réalisée dans les conditions suivantes. Cinq plots de 3×3 m ont été délimités en fonction de la distance au tronc :

A: I-3 m, zone d'ombrage stricte; B: 3-6 m, limite de la frondaison; C: 6-9 m, hors frondaison, soumise à une forte influence racinaire; D: 9-12 m, hors couvert,

faible influence racinaire; E:30 m du tronc, influence racinaire nulle, zone témoin. Dans chaque plot, 4 carottes (10 x 20 cm) ont été prélevées à 40-60 cm de profondeur. Ce niveau correspond au milieu de la tranche de sol (25-75 cm) où se situent le maximum de nodules (Diouf et al., cet ouvrage)³ et où l'influence des racines de la strate herbacée est faible (BILLE, 1977; AKPO, 1992). Une fois collectés, les sols de chaque plot sont mélangés, séchés à l'air, passés au travers d'un tamis de 2 mm et stockés à 4 °C.

Analyses biochimiques

Avant analyse, les sols sont amenés à 60 % de leur capacité au champ et mis à équilibrer à la température du laboratoire pendant une semaine. Tous les paramètres ont été analysés d'après les méthodes décrites par ALEF et NANNIPIERI (1995).

Le $\mathrm{NH_4}^+$ est extrait par du KCl IM. Le $\mathrm{NO_3}$ est dosé par colorimétrie après extraction par $\mathrm{K_2SO_4}$ 0,5M. Le phosphore assimilable est extrait par $\mathrm{NH_4F}$ IN. Le carbone organique total est déterminé après oxydation par du $\mathrm{K_2Cr_2O_7}$ IN à 100 °C pendant 90 minutes.

La biomasse microbienne du sol, calculée comme étant le carbone de la biomasse (C biomasse), est évaluée par la méthode de fumigation-extraction de VANCE et al. (1987). Cette biomasse comprend la totalité des micro-organismes qui vivent dans le sol ayant des dimensions < 5 000 μm^3 . C'est une petite partie de la fraction organique du sol, très labile mais importante comme réserve de nutriments. Notons cependant que la méthode ne permet pas d'évaluer les changements de structure de la communauté microbienne comme par exemple les variations du rapport champignons/bactéries du sol.

La production de CO_2 est déterminée par incubation des sols à 28 $^{\circ}C$ pendant 24 à 192 h et piégeage dans du NaOH IN.

Pour mettre en évidence des différences entre les cycles nutritifs dans les horizons du sol, l'activité de certains enzymes impliqués dans le cycle de P et N (Nannipieri et al., 1990) a été évaluée. L'activité de la déshydrogénase a été évaluée par colorimétrie après incubation pendant 20 h à l'obscurité à la température du laboratoire avec du (2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phényl tétrazolium chlorure) 0,4 %. L'activité de la phosphatase est analysée en suivant l'hydrolyse du p-nitrophenyl-phosphate (0,115 M) en p-nitrophénol pendant 20 mn à 37 °C à pH 5. L'activité de la protéase est déterminée par l'hydrolyse de la caséine pendant 1 h d'incubation à 52 °C à pH 8. La production d'aminoacides est déduite d'une courbe d'étalonnage établie avec différentes concentrations de tyrosine. La L-Glutaminase est dosée par hydrolyse de la L-Glutamine pendant 2 h d'incubation à 37 °C et à pH 10. Enfin, l'activité de l'uréase est évaluée par hydrolyse de l'urée pendant 2 h d'incubation à 37 °C à pH 9.

Nous ne reviendrons pas sur les méthodes relatives à la caractérisation microbiologique qui ont été largement décrites par GREGO et al. (2000). Rappelons

^{3. «} Phénologie de la nodulation d'Acacia raddiana en milieu naturel ». In Grouzis M., Le Floc'h E., éd. : Un arbre ou désert, Acacia raddiana. Paris, IRD Éditions, 2003 : 171-182.

brièvement que cette caractérisation a été conduite comme suit :

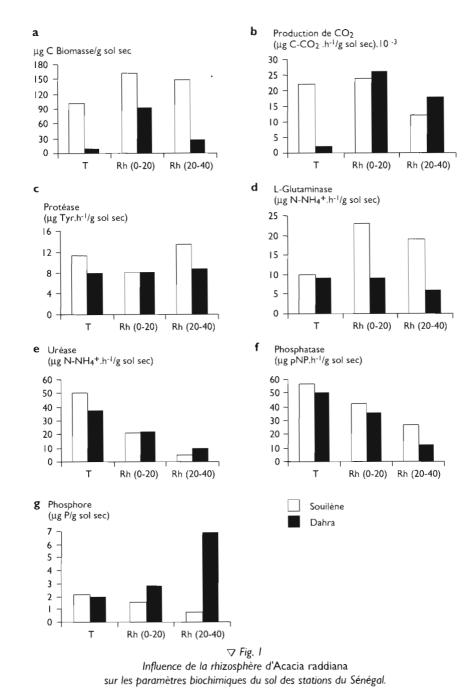
- les bactéries du sol ont été extraites selon la méthode de LINDAHL et BAKKEN
 (1995) et dénombrées sur lame à l'épifluorescence;
- dénombrement sur lame des NEG (groupes des bactéries efficientes pour l'azote); c'est un groupe de bactéries hétérotrophes capables de vivre avec des concentrations d'azote presque nulles (HERMAN et al., 1995);
- comptage par la méthode MPN (most probable number) des groupes physiologiques ammonificateurs et des nitro-oxydants, qui font partie du cycle de l'azote. Les données ont été soumises à une analyse de variance. La plus petite différence significative (PPDS) a été utilisée pour évaluer la signification des différences pour une p < 0.05.

Résultats

Sénégal

EFFET RHIZOSPHÉRIQUE - VARIABILITÉ INTERSITE

Le sol témoin de la station de Souilène a un pH $_{\rm H2O}$ presque neutre avec une tendance à l'alcalinité (7,4) ; le pH $_{\rm KCl}$ est sub-acide (6,8).


Les observations effectuées dans le sol rhizosphérique (0-20 et 20-40 cm) à la base d'Acacia raddiana attestent que les racines ne semblent pas influencer le pH. En effet, les variations par rapport aux témoins sont très faibles. À Dahra, par contre, le sol rhizosphérique d'A. raddiana est nettement plus basique que le témoin : le pH évolue de 7,1 à 8,5. Dans cette station, les micro-organismes évoluent dans un milieu alcalin ayant une bonne capacité d'échange.

Les variations des principaux paramètres biochimiques du sol des stations du Sénégal sont représentées sur la figure 1.

La biomasse microbienne de l'horizon de surface est toujours plus élevée dans la zone rhizosphérique, attestant de conditions trophiques plus favorables, imputables à l'apport de matières organiques par des racines ou autres débris végétaux (fig. 1 a). L'effet rhizosphère se manifeste aussi au niveau 20-40 cm, où la valeur du carbone-biomasse sous *Acacia* est significativement plus élevée que dans le témoin. L'effet rhizosphérique d'*Acacia raddiana* est plus important à Dahra (2 à 8 fois plus que le témoin) qu'à Souilène (environ 1,5 fois plus que le témoin).

Les valeurs relatives à la respiration (fig. I b) montrent que la vitalité des microorganismes à Dahra est nettement plus forte qu'à Souilène. En effet, la production de CO₂ sous *Acacia* à Dahra est 10 à 14 fois plus élevée que dans le témoin. À Souilène, la respiration sous *Acacia* est équivalente (0-20), voire inférieure (20-40), à celle du témoin.

La L-glutaminase et la protéase sont des enzymes importantes pour la minéralisation de l'azote de la matière organique du sol. Bien que la protéase soit légèrement

supérieure dans le deuxième horizon de la zone rhizosphérique, les différences relatives à son activité (fig. ! c) ne sont pas significatives, aussi bien à Souilène qu'à Dahra. À Souilène, l'activité de la Glutaminase est pratiquement doublée dans la rhizosphère d'Acacia par rapport au témoin (fig. ! d). À Dahra, les différences ne

sont pas significatives. Il est possible que ce résultat soit lié à l'environnement de la zone racinaire, plus riche en matière organique produite par les plantes et par les micro-organismes. Par ailleurs, il faut souligner que ces activités sont remarquablement faibles.

Dans le sol rhizosphérique d'Acacia raddiana, les activités de l'uréase (fig. 1 e) et de la phosphatase (fig. 1 f) sont toujours significativement plus élevées dans le sol témoin (phosphatase : PPDS = 11, p < 0,01 ; uréase : PPDS = 8, p < 0,01). Les activités enzymatiques ont tendance à être plus élevées dans la couche superficielle que dans la couche 20-40 cm, mais les différences ne sont pas significatives et les résultats sont comparables entre Souilène et Dahra.

Les teneurs en P assimilable (fig. I g) augmentent dans les sols de la rhizosphère à Dahra et ont tendance à diminuer à Souilène. La comparaison des teneurs en P avec celles de l'activité de la phosphatase montre qu'il existe une relation inverse entre ces deux paramètres.

EFFET RHIZOSPHÉRIQUE -

Variation en fonction de la distance au tronc

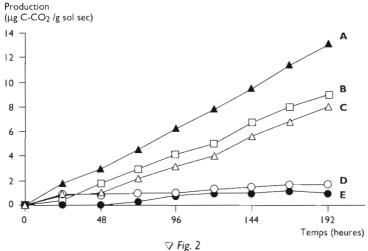
Cette étude a été conduite, d'une part, pour préciser l'influence du système racinaire d'Acacia raddiana sur les propriétés biochimiques et microbiologiques du sol environnant et, d'autre part, pour vérifier que la sensibilité des indicateurs biologiques est suffisamment élevée pour mettre en évidence des différences, même en milieux extrêmes.

Les résultats relatifs aux paramètres biochimiques sont consignés dans le tableau II.

▽ Tableau II –	Valeurs moyennes des paramètres biochimiques du sol					
en fonction de la distance au tronc.						

Site (distance au tronc)	CO, (%)	C _B (µg C/g ss)	Déshydrogénase (μg INT F/g ss h)		N-NO ₃ (μg NO ₃ /g ss)	P _{ass} (μg P/g ss)	Phosphatase (µg pNP/g ss h)
A (1-3 m)	0,18	71,0	1,6	3,3	1,80	21,1	14,9
B (3-6 m)	0,15	64,7	2,2	2,8	2,3	31,2	11,1
C (6-9 m)	0,13	13,1	1,8	4,2	0,9	37,9	10,7
D (9-12 m)	0,11	16,9	1,1	3,6	1,0	40,7	15,2
E (30 m)	0,10	50,0	nd	4,3	0,3	0,7	29,4
PPDS	0,03	40	0,6	0,5	0,7	8,0	4,0

Carbone organique total (CO₂); Biomasse microbienne (C_B); Déshydrogénase; Azote minéral (N-NH₄, N-NO₃); Phosphore assimilable (P_{ass}) et Phosphatase; PPDS: plus petite différence significative à p < 0.05; nd: non décelable; ss: sol sec.


Les teneurs en matière organique (CO_t) sont en général faibles. Ce caractère est certainement dû au niveau de prélèvement (40-60 cm), car il est bien connu que la teneur en matières organiques diminue le long du profil en milieu tropical

(CAMPBELL et al., 1994). On constate néanmoins que cette teneur décroît significativement le long du transect et qu'il n'y a pas de différences significatives entre les sites D et E.

Une fraction importante de la matière organique est piégée dans la biomasse microbienne, dont les valeurs sont élevées et similaires sous couvert (A et B) ; elles décroissent ensuite jusqu'à 12 m du tronc (C et D). Dans le site E, la biomasse microbienne augmente, ce qui témoigne d'un comportement particulier de ce site témoin. Cette biomasse est très sensible aux conditions du sol et les variations de la matière organique lui sont significativement corrélées (r = 0.63, p < 0.1).

La biomasse de carbone informe sur l'importance de la population microbienne sans toutefois renseigner sur son activité métabolique. C'est pourquoi la production de CO_2 cumulée pendant 8 jours, l'activité de la déshydrogénase, indicateur de l'activité métabolique des cellules, et le quotient métabolique (q CO_2 : quantité de CO_2 produite par heure et par unité de biomasse) ont été mesurés.

Les variations de la production cumulée de CO_2 en fonction du temps, reportées sur la figure 2, montrent que la respiration du sol est très faible et diminue du site A au site C. Elle est presque nulle au niveau du site D et du témoin (site E).

Variations de la production cumulée de CO₂ en fonction du temps A (1-3 m) ; B (3-6 m) ; C (6-9 m) ; D(9-12 m) ; E (30 m).

Par ailleurs, les valeurs du quotient métabolique (q CO_2) des cinq sites échantillonnés ne sont pas significativement différentes, en raison certainement de la production horaire de CO_2 qui est extrêmement faible ; elle n'est pratiquement pas mesurable.

La production de CO_2 est considérée comme un indicateur très sensible de l'activité de la biomasse du sol. À proximité du tronc (A), où la biomasse est élevée, la production de CO_2 est également élevée. Par contre, à 30 m (E), où la

biomasse microbienne est de nouveau élevée, la production de CO_2 est faible. Ce résultat indique que la biomasse n'est pas métaboliquement active à ce niveau. Cela est confirmé par les données de l'activité de la déshydrogénase. En effet, les données sur l'activité de la déshydrogénase (tabl. II) semblent être en parfait accord avec la production de CO_2 . On observe une différence significative entre les sites soumis à l'influence racinaire (A, B et C) et le site D. L'activité de la déshydrogénase n'est pas décelable au niveau du témoin (E).

Les disponibilités en N minéral et en P sont aussi consignées dans le tableau II. Il existe une corrélation inverse entre les teneurs en N-NH₄+ et en N-NO₃- (r = -0,95, p < 0,05). La distribution de N-NH₄+ est plus constante et représente la quasi-totalité de l'azote minéral dans le site témoin (E).

La teneur en P augmente de manière significative du site A au site D (+ 95 %). La disponibilité en phosphore est généralement en corrélation inverse avec l'activité de la phosphatase (r = 0,90). Cette activité est d'ailleurs très faible, caractéristique des niveaux enregistrés dans des milieux dégradés (GARCIA et al., 1994). La teneur en P du site témoin (E) est très basse (0,71 μ g.g $^{-1}$ sol sec), elle correspond à une forte activité de la phosphatase.

Tout comme pour l'accroissement de la biomasse microbienne, il apparaît que le site témoin possède des propriétés biologiques particulières.

Pour déterminer les groupes physiologiques de micro-organismes les plus représentés dans la biomasse microbienne, des méthodes d'extraction et de dénombrement des bactéries du sol ont été mises en œuvre. Les résultats sont présentés au tableau III.

On observe généralement une bonne correspondance entre la biomasse microbienne déterminée par fumigation et celle quantifiée par des techniques de comptage. Cette correspondance ne s'observe cependant pas entre la biomasse (tabl. II) et la quantité de bactéries évaluée par épifluorescence (tabl. III). Cela est particulièrement vérifié pour le site témoin (E) où un accroissement, quoique

 ∇ Tableau III — Nombre de bactéries à l'épifluorescence (NB_{épifl}: log CFU.g' sol sec) ; groupe des bactéries efficientes pour l'azote (NEG : log CFU.g' sol sec) ; hétérotrophes totales (HTR : log CFU.g' sol sec) ;

nombre de bactéries ammonificatrices et nitro-oxydantes (x 10^4 .g 1 sol sec \pm erreur standard) en fonction de la distance au tronc.

				Bactéries		
Site	NB _{épifi}	NEG	HTR	ammonificatrices	nitro-oxydantes	
A (1-3 m)	7,9	4,2	4,1	23,7±4,5	4,2±0,8	
B (3-6 m)	7,5	4,0	3,9	9,2± 1,7	2,1±0,3	
C (6-9 m)	7,4	4,0	3,9	28,5±3,6	2,7±0,4	
D (9-12 m)	7,4	4,5	3,9	35,6±9,1	3,0±0,7	
E (30 m)	7,3	3,4	3,4	1,7±nd	0,1±nd	
PPDS	0,5	0,4	0,5	nd	1,9	

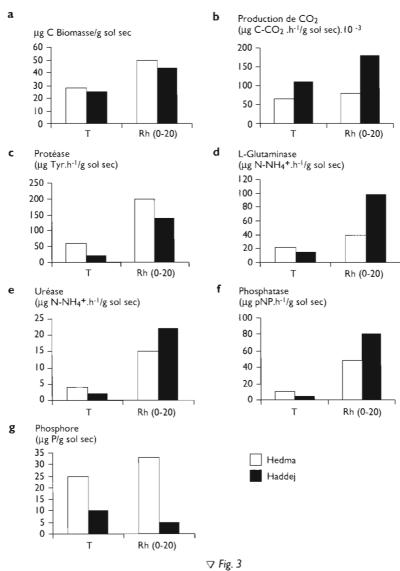
Les valeurs rapportées correspondent à la moyenne de trois extractions. PPDS pour p < 0.05. nd : non détectable. CFU : colonie formant unité. non significatif, de la biomasse n'est pas accompagné par une augmentation similaire du nombre de bactéries. Étant donné que l'évaluation des champignons n'a pas été réalisée dans cette étude, il est difficile d'expliquer la nature de cette différence.

La valeur relative aux hétérotrophes strictes, qui sont une fraction des bactéries dénombrées à l'épifluorescence, diminue au niveau du site témoin, ce qui indique qu'une grande fraction des cellules bactériennes sont ici inactives.

Les NEG sont constants dans les zones influencées par le système racinaire de l'arbre, puis diminuent significativement à 30 m (tabl. III).

Les bactéries ammonificatrices sont peu représentées le long du transect et disparaissent pratiquement dans le site témoin. Le nombre de bactéries nitrificatrices est généralement très bas ; il est insignifiant dans le site témoin. Des résultats comparables ont été rapportés par DOMMERGUES et al. (1980) pour les sols sableux du Sénégal. Ce résultat explique l'absence de nitrate et le cumul d'ammonium dans le site témoin et suggère que dans ces sols pauvres la minéralisation de l'azote est régulée par les nitrificatrices. Cependant, les faibles valeurs observées dans cette étude peuvent aussi être dues aux limites de la méthode utilisée (MPN) (MAZZARINO et al., 1991).

Tunisie


EFFET RHIZOSPHÉRIQUE - VARIABILITÉ INTERSITE

Le pH de l'horizon superficiel du sol témoin est basique (respectivement 8,8 à l'eau et 8,5 au KCI). Ce pH est diminué de plus d'une unité dans la rhizosphère d'Acacia raddiana âgé de 10 ans. La rhizosphère modifie à la fois la capacité de rétention des protons et d'absorption des éléments minéraux, ce qui détermine probablement un habitat favorable aux activités des micro-organismes et des enzymes exocellulaires, représentées sur la figure 3.

La biomasse de carbone, qui, rappelons-le, est un paramètre quantitatif de la biomasse microbienne présente dans le sol, est significativement plus élevée dans la rhizosphère d'A. raddiana que dans les sols témoins (fig. 3 a). Dans les deux sites de Bou Hedma et de Haddej, la biomasse est environ deux fois plus élevée dans la rhizosphère que dans le sol non influencé par les racines.

La biomasse microbienne y est relativement active, ainsi que le démontrent les valeurs de production de ${\rm CO_2}$. La production de ${\rm CO_2}$ pendant 10 jours à humidité et température constantes (60 % de la capacité au champ et 25 °C) montre que la biomasse microbienne présente dans la rhizosphère des plantes analysées est très active : elle est 1,2 à près de 2 fois plus élevée que dans le sol témoin suivant les sites étudiés (fig. 3 b). Notons aussi que la respiration des sols de Tunisie est 10 fois plus élevée que celle des sols du Sénégal.

L'activité des enzymes exocellulaires (protéase, L-glutaminase et uréase) est largement plus importante sous *Acacia raddiana* que dans le sol témoin, quelle que soit la station considérée. Notons cependant que l'effet rhizosphérique est 2 à 3,5 fois plus fort à Haddej qu'à Bou Hedma (fig. 3 c, 3 d, 3 e). Il en est de même de la phosphatase(fig. 3 f). On vérifie de nouveau la relation inverse liant le P à la phosphatase.

Influence de la rhizosphère d'Acacia raddiana sur les paramètres biochimiques du sol des stations de Tunisie.

Discussion

L'effet rhizosphérique d'Acacia raddiana a été caractérisé dans deux biotopes situés au nord (Tunisie) et au sud (Sénégal) du Sahara. Cet effet a été déterminé en comparant la biomasse microbienne et sa respiration ainsi que l'activité d'un certain nombre d'enzymes impliquées dans le cycle de l'azote et du phosphore

dans des sites soumis à l'influence du système racinaire de cette espèce et dans des zones témoins. Nous avons par ailleurs éprouvé la sensibilité des indicateurs biologiques retenus.

Une faiblesse générale de l'activité biochimique et microbiologique des sols échantillonnés a tout d'abord été observée. Cela confirme que le niveau des processus biologiques dépend strictement du milieu. Les conditions d'aridité et de pauvreté édaphique (faible teneur en matières organiques, en nutriments, déficit hydrique marqué, problème de structure du sol...) engendrent un écosystème oligotrophe caractérisé par la médiocrité des activités biologiques. Dans notre étude, de nombreux paramètres se situent à la limite de détection des méthodes analytiques utilisées. Cependant, la plupart d'entre elles ont permis de mettre en évidence des différences entre sites, démontrant ainsi l'effet rhizosphérique d'Acacia raddiana.

En effet, des paramètres comme la teneur en matière organique, la biomasse microbienne, la respiration du sol, l'activité de presque toutes les enzymes impliquées dans le métabolisme de l'azote et du phosphore (à l'exception de l'uréase et de la phosphatase dans les sols sénégalais) ainsi que presque toutes les données microbiologiques présentent des valeurs plus élevées à proximité de l'arbre. Cela suggère l'existence d'un microcosme biologique dans le sol directement influencé par le système racinaire d'Acacia raddiana.

Cet effet rhizosphérique peut être comparé à ceux mis en évidence par GREGO et al. (1997) pour d'autres espèces colonisant les mêmes biotopes : Astragalus armatus (Tunisie) ou Balanites aegyptiaca et Acacia nilotica (Sénégal).

Dans l'ensemble, l'effet rhizosphérique d'Acacia raddiana est tout à fait similaire à celui d'Astragalus armatus, mais c'est l'ampleur de l'effet qui change. Acacia raddiana a par exemple une activité protéolitique très forte, près de dix fois plus élevée que l'activité de la même enzyme dans la rhizosphère d'Astragalus. Par contre, l'activité de la L-glutaminase est 2 fois plus élevée pour Astragalus que pour Acacia.

Dans la rhizosphère d'Acacia raddiana, l'activité d'immobilisation de l'azote pourrait être prédominante par rapport à l'activité de minéralisation des matières azotées. Il en résulterait une dégradation rapide des protéines et les aminoacides produits seraient préférablement utilisés par les micro-organismes pour la synthèse de nouvelle matière organique et non pas pour la poursuite de la minéralisation. Pour A. armatus, le processus de minéralisation serait au contraire prépondérant, comme l'indique l'intense activité de l'enzyme L-glutaminase.

Au Sénégal, les effets rhizosphériques d'Acacia raddiana et de Balanites aegyptica sont similaires quant à la biomasse microbienne, la respiration du sol et l'activité de l'uréase. Des différences notables s'observent par contre pour l'activité de la phosphatase à Dahra (GREGO et al., loc.cit.). Sous Acacia, l'activité de cette enzyme diminue par rapport au témoin alors qu'elle double pratiquement sous Balanites. Cette différence est facilement explicable quand on sait que Balanites acidifie le milieu (pH témoin : 7,1, pH rhizosphère : 5,4) alors qu'Acacia l'alcalinise (pH témoin : 7,1, pH rhizosphère : 8,5). Les sols rhizosphériques des deux espèces sont donc très différents (plus de 3 points de pH d'écart), ce qui crée des habitats contrastés pour la fraction microbiologique et les activités enzymatiques. C'est

ce qui explique en particulier l'importance de l'activité de la phosphatase sous *Balanit*es, car elle se trouve dans un milieu dont le pH est très proche de son optimum de fonctionnement.

L'effet rhizosphérique peut aussi varier avec l'âge du peuplement. En comparant cet effet dans des peuplements d'Acacia raddiana âgés de 10,25 et 100 ans, GREGO et al. (1994) ont montré que tous les résultats obtenus avec les sols prélevés sous les vieux arbres n'étaient pas significativement différents des résultats relatifs aux sols témoins. Ce caractère est imputable à la difficulté de trouver, sous les vieux arbres, des racines jeunes métaboliquement actives.

L'effet rhizosphérique varie aussi avec les conditions stationnelles. Ainsi, l'effet rhizosphérique est pour la Tunisie nettement plus important à Haddej qu'au Bou Hedma, et pour le Sénégal à Dahra qu'à Souilène. Ces différences sont à mettre en relation avec les conditions trophiques (bilan hydrique, matière organique, nutriments).

De même, des différences notables existent entre les stations situées au nord et au sud du Sahara. La quantité de biomasse microbienne est, dans l'ensemble, plus élevée dans les sols sénégalais ; par contre, cette biomasse est près de 10 fois plus active en Tunisie. Selon INSAM (1990) des valeurs très élevées de production de CO₂ sont caractéristiques de sols ayant reçu des substrats frais facilement dégradables. Nos résultats montrent donc qu'en Tunisie *Acacia raddiana* enrichit sa rhizosphère de matériel organique soluble en quantités plus importantes qu'au Sénégal.

Les teneurs en P assimilable sont toujours plus élevées dans les sols rhizosphériques du Sénégal où la biomasse microbienne est peu active. En Tunisie, la microflore est abondante, la respiration est élevée. Les teneurs en P assimilable sont donc faibles parce que cet élément est absorbé par les micro-organismes et probablement par les végétaux eux-mêmes.

Le suivi de l'activité des enzymes extracellulaires, liées au cycle du N, comme la protéase et la glutaminase, révèle que le cycle de l'azote est plus actif dans les sols rhizosphériques de Tunisie que du Sénégal. La minéralisation de l'azote et en conséquence la disponibilité de cet élément au niveau des plantes et des microorganismes sont meilleures en Tunisie. L'analyse des paramètres biologiques et biochimiques indique donc de meilleures conditions de fertilité en Tunisie.

Notons enfin que cette étude a permis d'éprouver la sensibilité d'un certain nombre de bio-indicateurs.

Ainsi la biomasse microbienne, déjà identifiée par GREGO et al. (1996) comme un bio-indicateur sensible, donne des indications précoces sur la dégradation ou la restauration des sols (GARCIA et al., 1994).

L'activité de la déshydrogénase a été un indicateur sensible dans notre cas. Elle est largement considérée comme un bon indicateur pour tester l'activité biologique des sols (TREVORS, 1984). Cependant, certains auteurs ont récemment rapporté qu'elle peut être influencée par de nombreux facteurs et concluent que, pour être valable, une comparaison écologique des sols devrait prendre en compte d'autres propriétés microbiologiques (GARCIA et al., 1994; GARCIA et HERNANDEZ, 1997).

Le quotient métabolique (qCO₂) est un paramètre sensible mais controversé pour tester quantitativement l'activité métabolique de la biomasse microbienne (WARDLE et GHANI, 1995 ; GREGO et al., 1998). Certains auteurs (INSAM et DOMSCH, 1988 ; GREGO et al., 1996) considèrent que le qCO₂ est un paramètre approprié pour évaluer les changements d'état des communautés microbiennes dans les écosystèmes jeunes et mâtures. Dans cette étude, les valeurs du quotient métabolique, en relation avec les très faibles taux de CO₂ dégagés par heure, ne donnaient pas de différences significatives entre les différents sites échantillonnés. Ce résultat indique que ce paramètre n'est pas un bio-indicateur utilisable dans ces conditions écologiques extrêmes, comme l'ont déjà rapporté GARCIA et al. (1994) dans une étude antérieure.

Conclusion

L'effet rhizosphérique d'Acacia raddiana a été caractérisé dans deux biotopes situés au nord (Tunisie) et au sud (Sénégal) du Sahara.

Il est tout d'abord apparu que les activités biochimique et microbiologique des sols échantillonnés sont dans l'ensemble faibles et témoignent de conditions oligotrophes. Cependant, nous avons pu montrer, grâce à la sensibilité des indicateurs, que la presque totalité des paramètres suivis est influencée par la présence du système racinaire, démontrant ainsi un « effet rhizosphère ».

L'effet rhizosphérique d'Acacia raddiana est tout à fait comparable à ceux d'autres espèces des zones étudiées (Astragalus armatus, Balanites aegyptiaca...), mais c'est l'ampleur de l'effet qui permet de les distinguer.

Cet effet rhizosphérique d'Acacia raddiana, varie avec l'âge du peuplement et les conditions trophiques (bilan hydrique, matière organique, nutriments) qui caractérisent les stations, notamment celles situées au nord et au sud du Sahara.

Les résultats obtenus permettent de confirmer l'intérêt que peut présenter A. tortilis subsp. raddiana dans les stratégies de réhabilitation des zones dégradées.

Auteurs

S. Grego, M. C. Moscatelli, E. Di Mattia, S. Marinari, I. Cacciari
DABAC,
Universita della Tuscia,
01100 Viterbo, Italie

Références bibliographiques

AKPO L. E.,

1992 – Influence du couvert ligneux sur la structure et le fonctionnement de la strate herbacée en milieu sahélien. Les déterminants écologiques.

Thèse 3e cycle, UCAD Dakar, 174 p.

AKPO L. E.,

1998 – Effet de l'arbre sur la végétation herbacée dans quelques phytocénoses au Sénégal. Variation selon un gradient climatique. Thèse doct. d'État, UCAD Dakar, 133 p.

ALEF K., NANNIPIERI P., (eds),

1995 – Methods in Applied Soil Microbiology and Biochemistry. London, Academic Press.

BILLE J. C.,

1977 – Étude de la production primaire nette d'un écosystème sahélien. Paris, Orstom, Trav. Doc., 65, 82 p.

BELSKY A. J., AMUNDSON R. G., DUXBURY J. M., RIHA S. J., ALI A. R., MWONGA S. M.,

1989 – The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya.

Journal of Applied Ecology, 26: 1005-1024.

BURNS R. G.,

1985 – The rhizosphere: microbial and enzymatic gradients and prospects for manipulation. *Pédologie*, 35 (3): 283-295.

CAMPBELL B. M., FROST P., KING J. A., MAWANZA M., MHLANGA L.,

1994 – The influence of trees on soil fertility on two contrasting semi-arid soil types at Matopos, Zimbabwe.

Agroforestry Systems, 28: 159-172.

DOMMERGUES Y., GARCIA J. L., GANRY F.,

1980 – « Microbiological considerations of the N-cycle in West African ecosystems ». In Rosswall T., ed: Nitrogen Cycling in West African Ecosystems, SCOPE/UNEP Workshop, Ibadan, December 1978, Stockholm, Royal Swedish Academy of Sciences: 55-72.

DORAN J. W., PARKIN T. B.,

1994 – « Defining and assessing soil quality ». In Doran J. W., Coleman D. C., Bezdicek D. F., Stewart B. A., eds: Defining Soil Quality for a Sustainable Environment, Wisconsin, Madison, SSSA Special Publication n° 35: 3-22.

GARCIA C., HERNANDEZ T.,

1997 – Biological and biochemical indicators in derelict soils subject to erosion.

Soil Biol Biochem., 29 (2): 171-177.

GARCIA C., HERNANDEZ T., COSTA F.,

1994 – Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem., 26 (9): 1185-1191.

GREGO S., CACCIARI I., BADALUCCO L., DE CESARE F., QUATRINI P., MOSCATELLI M. C.,

1994 – « Analyses biochimiques et biologiques des sols du Bou Hedma et de Haddej (Tunisie) ». In Grouzis M., éd.: Réhabilitation des terres dégradées au nord et au sud du Sahara. Utilisation de légumineuses pérennes et des micro-organismes associés pour l'établissement des formations pluristrates, Dakar, Orstom, rapport de deuxième année, Contrat Union européenne, STD3, TS3*CT92-0047: 1-23.

GREGO S., BENEDETTI A., DELL'ORCO S., ROSSI G., MARINARI S., BADALUCCO L.,

1996 – Agricultural practices and biological activity in soil. Fresenius Environmental Bulletin, 5: 282-288.

GREGO S., CACCIARI I., BADALUCCO L., MARINARI S., DI MATTIA E., MOSCATELLI M.C.,

1997 – « Biochimie de la rhizosphère ». In Grouzis M., éd.: Réhabilitation des terres dégradées au nord et au sud du Sahara. Utilisation de légumineuses pérennes et des micro-organismes associés pour l'établissement des formations pluristrates, Dakar, Orstom, Rapport final, Contrat Union européenne STD3, TS3*CT92-0047: 121-129.

GREGO S., MARINARI S, MOSCATELLI M. C., BADALUCCO L.,

1998 – Effect of ammonium nitrate and stabilised farmyard manure on microbiological biomass and metabolic quotient of soil under Zea mays.

Agr. Med., 128: 132-137.

GREGO S., DI MATTIA E., MOSCATELLI M. C., CACCIARI I.,

2000 – « Functional diversity of microbial communities present in the rhizosphere of Acacia tortilis: an ecophysiological approach ». In Floret Ch., Pontanier R., éd.: La jachère en Afrique tropicale, Paris, John Libbey Eurotext: 300-307.

Grouzis M., (éd.),

1991 — Réhabilitation des terres dégradées au nord et au sud du Sahara.
Utilisation de légumineuses pérennes et des micro-organismes associés pour l'établissement des formations pluristrates.
Contrat Union européenne STD3,
TS3*CT92-0047, Dakar, Orstom, 80 p.

GROUZIS M., (éd.),

1997 – Réhabilitation des terres dégradées au nord et au sud du Sahara.
Utilisation de légumineuses pérennes et des micro-organismes associés pour l'établissement des formations pluristrates.
Dakar, Orstom, Contrat
Union européenne STD3,TS3*CT92-0047, rapport final, 166 p.

GROUZIS M., AKPO L. E.,

1997 – Influence of tree cover on herbaceous above- and below-ground phytomass in the Sahelian zone of Senegal. Journal of Arid Environnements, 35: 285-296.

HERMAN R. P., PROVENCIO K., HERRERA MATOS J., TORREZ R. J.,

1995 – Resource islands predict the distribution of heterotrophic bacteria in Chihuahuan desert soils. Applied and Environmental Microbiology, 61: 1816-1821.

INSAM H., DOMSCH K. H.,

1988 – Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. *Microb. Ecol.*, 15: 177-188.

INSAM H.,

1990 – Are the soil microbiol biomass and basal respiration governed by the climatic regime?

Soil Biol. Biochem., 22 (4): 525-532.

LINDAHL V., BAKKEN L. R.,

1995 – Evaluation of methods for extraction of bacteria from soil. FEMS Microbiology Ecology, 16: 135-142.

MAZZARINO M. J., OLIVA L., ABRIL A., ACOSTA M.,

1991 – Factors affecting nitrogen dynamics in a semiarid woodland (Dry Chaco, Argentina).

Plant and Soil. 138: 85-98.

NANNIPIERI P, CECCANTI B., GREGO S.,

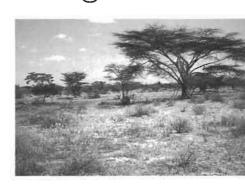
1990 – « Ecological significance of the biological activity in soil ». In Bollag J. M., Stotzky G., eds: Soil Biochemistry, New York & Basel, Marcel Dekker Inc., vol. VI: 293-356.

TREVORS J.T.,

1984 – Dehydrogenase activity in soil. A comparison between the INT and TTC assay. Soil Biol and Biochem., 19:703-707.

VANCE E. D., BROOKES P. C., JENKINSONS D. S.,

1987 – An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19:703-707.


WARDLE D.A., GHANI A.,

1995 – A critique of the microbial metabolic quotient (qCO₂) as a bioindicator of disturbance and ecosystem development.

Soil Biol Biochem., 27: 1601-1610.

Influence d'Acacia raddiana sur la structure et le fonctionnement de la strate herbacée dans le Ferlo sénégalais

M. GROUZIS L. E. AKPO

Résumé

Les observations réalisées sur les interactions arbre/herbe dans le Sahel sénégalais (Ferlo, 280 mm de précipitations annuelles) montrent qu'Acacia raddiana augmente la richesse floristique, modifie le cycle phénologique et accroît la production et l'immobilisation minérale de la strate herbacée située sous son couvert. L'impact positif de l'arbre sur la strate herbacée est principalement dû à l'amélioration des disponibilités en eau et à l'augmentation de la fertilité du sol.

Mots-clés:

STRUCTURE SPÉCIFIQUE, PHYTOMASSE, COMPOSITION MINÉRALE, RÉGÉNÉRATION,
STRATE HERBACÉE, SAHEL, SÉNÉGAL.

Abstract

Studies on tree and grass interactions in the Sahelian zone of Senegal (Ferlo, 280 mm of annual rainfall) show that Acacia raddiana increases the floristic richness, modifies the phenological cycle and improves the phytomass and the inorganic status of the understory herbaceous layer. These benefic effects are mainly due to the soil enrichment (water balance and fertility).

Keywords:

Introduction

Les relations de compétition entre les composantes arbre et herbe ont très souvent été évoquées dans les modèles de fonctionnement et d'aménagement des savanes (Walker et Noy-Meir, 1982; Knoop et Walker, 1985; Fowler, 1986; WALKER, 1987; BELSKY, 1990). Pourtant, de nombreux auteurs ont montré que dans les milieux semi-arides, les arbres favorisent non seulement les facteurs microclimatiques (TIEDEMAN et KLEMMEDSON, 1977; KELLMAN, 1979; BERNHARD-REVERSAT, 1982; OVALLE et AVENDANO, 1988), mais augmentent aussi la diversité et la production de la strate herbacée (OVALLE et AVENDANO, 1987; COUGHENOUR et al., 1990 ; VETAAS, 1992). On peut donc considérer que les arbres augmentent la production des cultures et des herbages à travers les pratiques agroforestières et sylvo-pastorales (KESSLER et BREMAN, 1991). En Afrique, de nombreux travaux ont été conduits dans les zones sub-humides (moyennes des précipitations annuelles entre 500 et 1 500 mm : SANFORD et al., 1982 ; GEORGIADIS, 1989 ; BELSKY et al., 1989; Weltzin et Coughenour, 1990; César, 1991), mais les interactions arbre-herbe ont été peu étudiées dans les zones plus arides (précipitations annuelles inférieures à 300 mm).

Ce travail conduit dans un écosystème sahélien du nord du Sénégal a eu pour but de définir, d'une part, l'influence de l'arbre sur la structure spécifique de la strate herbacée et, d'autre part, sur la phytomasse épigée et hypogée, le déroulement des cycles de vie des espèces herbacées, et sur la composition minérale de la strate herbacée. Dans cette étude sont plus spécifiquement présentés les résultats relatifs à l'influence d'Acacia raddiana.

Matériel et méthodes

Site d'étude

Cette étude a été réalisée dans les steppes d'épineux du Ferlo sénégalais, à proximité du lieu-dit Souilène (16° 21' N et 15° 26' W). Cette zone est soumise à un climat tropical sec de type sahélien. Les précipitations annuelles moyennes, distribuées sur 16 à 25 jours de pluies s'élèvent à 282 mm (AKPO, 1993). La variabilité interannuelle est forte (coefficient de variation de la période 1918-1990 = 37 % à Dagana, station synoptique située à 20 km au nord de Souilène). La saison des pluies s'étend en général du mois de juin au mois d'octobre, mais près de 90 % des précipitations ont lieu en juillet, août et septembre. Le paysage se caractérise par des formations dunaires de faible amplitude, non orientées, délimitant de petites dépressions fermées. Ce relief, bien que faible, joue un rôle déterminant dans la répartition des sols et des unités de végétation. Les

observations ont été principalement effectuées sur la formation à *Balanites aegyptiaca* (L.) Del. (38 individus.ha⁻¹, recouvrement 12,5 %), *Acacia tortilis* (Forssk.) Hayne subsp. *raddiana* (Savi) Brenan (27 individus.ha⁻¹, recouvrement : 23,5 %) et *Boscia senegalensis* (54 individus.ha⁻¹, recouvrement : 1,6 %). Cette unité de végétation correspond au PA4 de VALENZA et DIALLO (1972). La densité par hectare est en moyenne de 128 individus représentant un recouvrement ligneux de 38 %. Cette unité de végétation correspond à un sol ferrugineux peu lessivé localisé sur des formations dunaires récentes.

Méthodes

L'analyse de l'influence d'Acacia raddiana sur la structure spécifique de la végétation herbacée a été réalisée à partir de 33 relevés phytoécologiques de 50 m² chacun (20 sous couvert et 13 hors couvert). La surface ainsi délimitée est largement supérieure à l'aire minimale (16 m²) recommandée par POISSONET et CÉSAR (1972) pour l'étude des végétations herbacées tropicales. Pour chaque relevé, la liste est établie et le recouvrement de chaque espèce estimé. Les levées des espèces ligneuses sont inventoriées. La détermination des taxons a été effectuée à l'aide de la Flore du Sénégal (BERHAUT, 1967). Les synonymes ont été actualisés et normalisés sur la base de l'Énumération des plantes à fleurs d'Afrique tropicale (LEBRUN et STORK, 1992).

La phytomasse épigée a été évaluée par la méthode de la récolte intégrale, qui consiste à récolter toute la matière végétale sur pied (coupe à ras du sol) sur des placeaux de 0,25 m² sous et en dehors de l'aire de projection de la couronne de l'arbre. L'effectif de l'échantillonnage est de 106 (53 sous couvert et 53 hors couvert ligneux).

La méthode des carottages (BÖHM, 1979) a été retenue pour évaluer la phytomasse hypogée. Le diamètre intérieur de la sonde est de 57 mm, ce qui est nettement supérieur à la limite de 40 mm rapportée par SCHUURMAN et GOEDEWAGEN (1971) cité par GROUZIS (1988). Sous le couvert d'Acacia raddiana et à 3 m du tronc, 16 profils (4 dans chacun des points cardinaux) ont été échantillonnés. La zone de prélèvement hors couvert se situe à 35 m de l'arbre, c'est-à-dire à la limite de l'extension horizontale des racines actives de cette espèce (FOURNIER, 1995). Douze profils ont été prélevés pour ce témoin. Les prélèvements ont été effectués tous les 10 cm jusqu'à 50 cm et tous les 25 cm de 50 à 250 cm. Les racines sont récupérées au jet d'eau au travers de deux tamis superposés de 1 mm et de 0,50 mm. Après élimination des impuretés (sables, brindilles, semences...) les racines sont rincées, séchées à 85 °C jusqu'à poids constant.

À chaque récolte de phytomasse au cours du cycle de végétation et à partir d'un échantillon de 10 prélèvements sous Acacia et de 15 prélèvements hors couvert, nous avons procédé à la détermination de la teneur en N, P, K, Ca, Mg et Na des parties aériennes de la strate herbacée par des analyses chimiques au laboratoire.

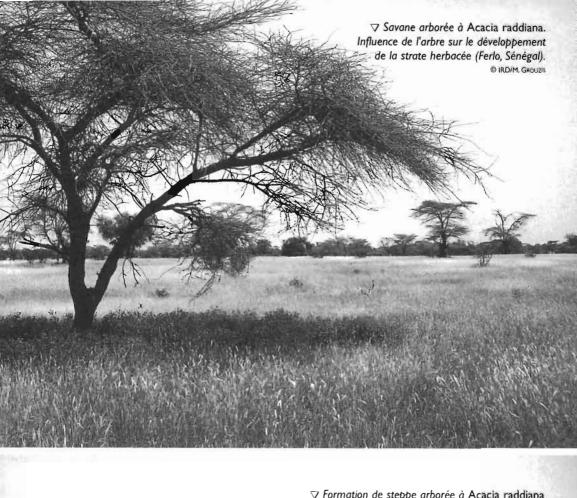
Résultats

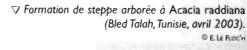
Influence de l'arbre sur la structure et la phénologie de la strate herbacée

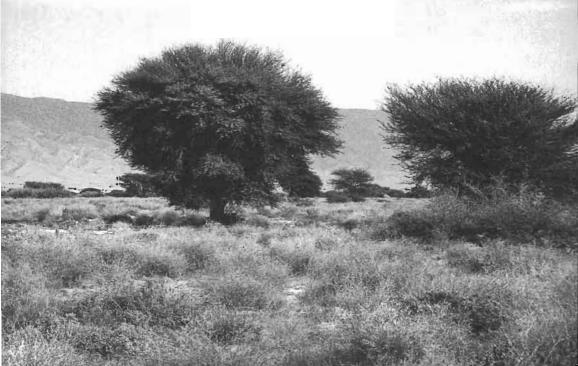
En considérant le nombre moyen d'espèces par relevé, il apparaît que la richesse floristique sous couvert d'Acacia raddiana est significativement plus élevée que celle hors couvert (17,7 > 15 avec un $t_{calculé} = 2,46 > t_{0,05} = 2,048$ pour un ddl = 38).

Les espèces caractéristiques du couvert ligneux, généralement des sciaphytes et des hygrophytes, sont dans leur grande majorité des dicotylédones (Amaranthaceae, Convolvulaceae, Cucurbitaceae) ou des monocotylédones à feuilles larges (Brachiaria [Poaceae], Commelina [Commelinaceae], Stylochiton [Araceae]). Les espèces caractéristiques des milieux découverts, généralement des xérophytes, appartiennent dans leur majorité à la famille des Poaceae à feuilles étroites plus ou moins enroulées (Eragrostis, Leptothrium...).

Les listes du tableau I renseignent sur le cortège floristique hors et sous couvert.


√ Tableau I – Espèces herbacées caractéristiques des biotopes sous et hors couvert d'Acacia raddiana (ensemble des relevés).


Espèces sous couvert (n = 16)	Achyranthes sicula, Cleome monophylla, Mukia maderaspatana, Ipomoea kostchyana, Ipomoea hederifolia, Brachiaria lata, Citrullus colocynthis, Cucumis melo, Jacquemontia tamnifolia, Ipomoea pes-tigridis, Ipomoea argentaurea, Brachiaria ramosa, Dipcadi longifolium, Stylochiton hypogaeus, Aerva javanica, Commelina benghalensis	
Espèces hors couvert (n = 7)	Chloris prieurii, Mollugo nudicaulis, Heliotropium strigosum, Leptothrium senegalense, Cleome viscosa, Mollugo cerviana, Eragrostis tremula	
Espèces indifférentes (n = 42)	Digitaria horizontalis, Dactyloctenium aegyptium, Cassia obtusifolia, Tribulus terrestris, Zornia glochidiata, Alysicarpus ovalifolius	


Les cycles phénologiques des espèces caractéristiques des biotopes hors et sous couvert montrent une différence fondamentale. Le cycle phénologique des espèces hors couvert est plus précoce et se caractérise par une durée plus courte (25 jours en moins) (AKPO et GROUZIS, 1993).

Influence de l'arbre sur la production

Il apparaît tout d'abord que la teneur en matières sèches est constamment plus élevée hors couvert que sous ombrage (45 et 28 % en début de cycle; 77 et 70 % en fin de cycle), ce qui indique que le biotope sous couvert offre des conditions plus favorables à l'alimentation hydrique des plantes.



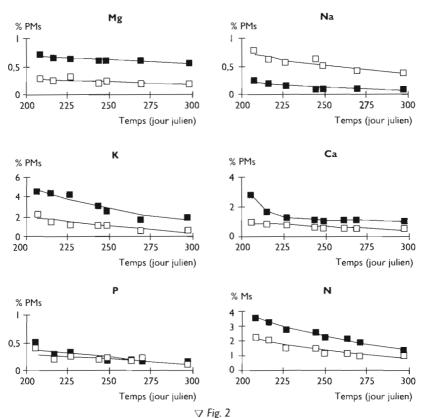
Durant la période de croissance, la productivité moyenne atteint 2,7 g_{MS} ·m⁻².j⁻¹ sous couvert d'Acacia raddiana et seulement I g_{MS} ·m⁻².j⁻¹ hors couvert. Le déficit hydrique qui a été enregistré au cours de la seconde décade de septembre a provoqué une chute de la production hors couvert (12 g_{MS} ·m⁻² [fig. 1]). Cette diminution n'est pas observable sous couvert d'Acacia, ce qui montre que celui-ci peut atténuer les effets de déficits pluviométriques. La phytomasse maximum observée au cours du cycle est de 165 \pm 6,4 g_{MS} ·m⁻² sous l'ombrage d'Acacia raddiana, et de 38,6 \pm 4,1 g_{MS} ·m⁻² hors couvert, soit un rapport de 4,3.

La distribution racinaire s'ajuste bien à une fonction exponentielle aussi bien sous couvert qu'à l'extérieur du couvert (GROUZIS et AKPO, 1997). Si on utilise la formulation de Gerwitz et Page (1974) qui exprime les variations du pourcentage de racines contenu dans une tranche de sol en fonction de la profondeur par la relation : R(%) = 100 (1-e $^{\rm bD}$), il apparaît que 62,7 % et 56,4 % de la masse racinaire respectivement hors et sous couvert d'Acacia se situent dans les 50 premiers centimètres du sol. Il faut atteindre respectivement 125 et 150 cm de profondeur pour avoir 90 % du système racinaire.

∇ Fig. I

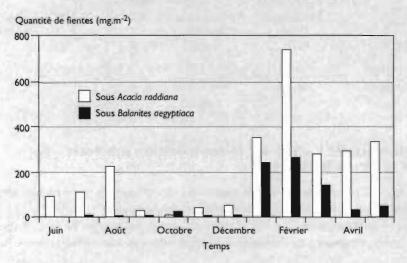
Variations saisonnières de la phytomasse herbacée épigée
(± intervalle de confiance, p = 0,05) durant le cycle de végétation sous Acacia raddiana (■) et hors couvert (□).

Le couvert ligneux favorise aussi la phytomasse racinaire : celle-ci est 1,7 plus élevée sous couvert que hors ombrage (tabl. II). Le rapport entre la phytomasse hypogée et la phytomasse épigée est de 1,6 sous Acacia. Il est 2,5 fois plus élevé à l'extérieur, indiquant ainsi des conditions plus xériques et de faibles conditions de nutrition au niveau de ce biotope.


▼ Tableau II – Phytomasse épigée et hypogée sous et hors couvert d'Acacia raddiana				
et rapport parties souterraines-parties aériennes.				

	Phytomasse épigée g _{MS} .m ⁻²	Phytomasse hypogée g _{MS} ·m-2	P. souterraines / P. aériennes
Sous Acacia	165 ± 6.4	261,2 ± 27.4	1,6
Hors Acacia	38,6 ± 4.1	154,6 ± 14.5	4
Sous/Hors	4,3	1,7	

Influence de l'arbre sur la composition minérale de la strate herbacée


La figure 2 représente l'évolution saisonnière des teneurs de quelques éléments minéraux de la matière sèche de la strate herbacée épigée.

Ces résultats montrent que les teneurs en cations majeurs, en N et en P sont toujours nettement plus élevées dans la strate herbacée sous couvert ligneux. Par

Variations saisonnières (cycle 1990) de la teneur en éléments minéraux (% MS) de la strate herbacée épigée sous (■) et hors couvert (□) d'Acacia raddiana.

La fertilisation par les oiseaux sous couvert ligneux en milieu sahélien

En zone sahélienne, TRÉCA et al. (1996) ont démontré que l'avifaune jouait un rôle important sur les apports en azote et en phosphore en relation avec les déjections.

Malgré de fortes variations saisonnières, environ 500 fois plus de fientes sont recueillies annuellement sous les arbres qu'à l'extérieur du couvert. Il existe une corrélation hautement significative entre la biomasse des oiseaux et les quantités de fientes recueillies par échantillonnage.

Les quantités de déjections collectées sous la couronne des arbres varient en fonction de l'espèce ligneuse servant de perchoir.

La figure ci-dessus présente les variations mensuelles des quantités de fientes collectées sous Acacia raddiana et sous Balanites aegyptiaca dans la station expérimentale de Souilène. À l'exception de la période allant de septembre à décembre, les

différences sont notables. La moyenne annuelle de fientes collectées sous Acacia raddiana est environ 3 fois plus élevée que celle sous Balanites aegyptiaca (215,5 mg.m⁻².j⁻¹ contre 64,7 mg.m⁻².j⁻¹).

Sous Balanites aegyptiaca, l'apport moyen d'azote total est de $3,6\pm2,8$ mg.m- 2 .j- 1 , ce qui correspond à $1,6\pm1,3$ kg.ha- 1 .an- 1 si l'on tient compte du recouvrement de cette espèce. Sous Acacia raddiana l'azote apporté par les fientes est de $12,9\pm6,8$ mg.m- 2 .j- 1 , soit $11,1\pm5,9$ kg.ha- 1 .an- 1 compte tenu de son recouvrement.

Hors couvert, les quantités d'azote déposées par les oiseaux sont estimées à 0,032 ± 0,013 kg.ha⁻¹.an⁻¹. De même, l'apport de phosphore peut être estimé à 926,4 ± 523,9 g.ha⁻¹.an⁻¹ sous les *Acacia*, 27,4 ± 25,2 g.ha⁻¹.an⁻¹ hors couvert.

ailleurs, on peut noter que le K est l'élément le plus abondant dans les parties aériennes de la strate herbacée sous couvert, suivi par N, Ca, Mg, P. II en est de même hors ombrage à l'exception du Na pour lequel la teneur hors ombrage est plus élevée. Ces résultats suggèrent de meilleures conditions trophiques sous ombrage. L'enrichissement des tissus des herbacées en cations majeurs et en N et P, toujours plus important sous l'ombrage, entraîne des restitutions plus importantes (AKPO, 1993;AKPO et al., 1995). Cela explique que les flux d'éléments minéraux entre le sol et la végétation passent essentiellement par la strate herbacée.

Influence de l'arbre sur la régénération

AKPO et GROUZIS (1996) ont montré que l'arbre améliore la régénération de certaines espèces ligneuses : globalement, les sites sous couvert présentent près de 7 fois plus de levées que les sites hors couvert. Il y a lieu de noter cependant que la régénération varie en fonction de l'espèce ligneuse assurant le couvert. Elle est plus importante sous Acacia raddiana (64 % des individus abritent des levées) et Balanites aegyptiaca (52 %) que sous Ziziphus mauritiana (4 %). Ce caractère s'explique par le port de ces deux espèces, qui en font des lieux privilégiés de repos pour les ruminants et des bons perchoirs pour les oiseaux, ce qui favorise la dissémination.

Discussion

Dans la zone sahélienne située au nord du Sénégal, nous avons précédemment montré que l'arbre améliore à la fois les conditions climatiques et édaphiques (AKPO, 1993; GROUZIS et AKPO, 1993).

Sur le plan climatique, le couvert ligneux réduit le rayonnement solaire, la température de l'air et la vitesse du vent, ce qui a pour effet de réduire l'ETP. En effet, la réduction de la température maximum de la journée de 2,5 °C correspondrait à une diminution d'environ 147 mm.an⁻¹ de l'ETP au niveau du sol (LE HOUÈROU et POPOV, 1981). Des résultats allant dans le même sens ont été rapportés par OVALLE et AVENDANO (1988), BELSKY et al. (1989), COUGHENOUR et al. (1990) et LE HOUÈROU (1993).

Sur le plan édaphique, il apparaît que l'arbre augmente la fertilité des sols, tout au moins dans les horizons de surface. En effet, la matière organique est 2 à 5 fois plus élevée en surface (0 à 10 cm) et 1,5 fois pour l'horizon plus profond (50 cm) sous l'ombrage que dans la zone découverte. Sous couvert, les teneurs en N sont 2 fois plus élevées en surface. Par ailleurs, nous avons montré, sous ombrage, l'importance de l'avifaune sur les apports en N et en P (TRÉCA et al., 1996 : cf. encadré). Des résultats similaires ont été obtenus par BERNHARD-REVERSAT (1982), ISICHEI et MUOGHALU (1992).

Sous le couvert de l'arbre, la quantité de précipitations arrivant au sol est plus faible de 13 % par rapport à l'extérieur en raison de l'interception par le feuillage. Mais du fait de l'écoulement le long du tronc, la pénétration est meilleure et le sol reste sensiblement plus humide. Il présente par ailleurs un dessèchement ascendant. Hors couvert, la réhumectation est plus précoce ; l'assèchement se fait de manière descendante (NIZINSKI et al., 1992).

Dans les zones sahéliennes, caractérisées par des conditions d'aridité et de pauvreté en N et en P, l'amélioration des conditions écologiques sous couvert est donc très favorable au développement de la strate herbacée. C'est pourquoi la production herbacée y est largement supérieure à celle observée hors couvert. Ces résultats corroborent ceux obtenus par Weltzin et Coughenour (1990) et Coughenour et al. (1990). Ils s'opposent cependant à ceux rapportés par Kessler (1992), Kater et al. (1992), Mordelet et Menaut (1995) et Akpo (1998) pour des zones écologiques plus humides et où la densité des ligneux est plus élevée. Akpo (1998) situe les seuils pluviométriques et de recouvrement des ligneux respectivement à 700-800 mm.an⁻¹ et à 60 %.

Bien qu'il soit difficile de séparer les racines des espèces ligneuses et herbacées sous ombrage, il apparaît que la phytomasse sous couvert est environ 2 fois plus importante. Cette diminution de la phytomasse hors couvert est associée à une augmentation du rapport parties souterraines/parties aériennes (2,5 plus élevé hors couvert que sous ombrage). Ce résultat suggère que les plantes investissent plus de photosynthétats dans les parties souterraines dans des conditions de plus grand déficit hydrique et nutritionnel telles que celles rencontrées hors du couvert ligneux.

Dans les conditions sahéliennes, l'impact positif de l'arbre et, plus spécifiquement d'Acacia raddiana, sur la strate herbacée est principalement dû à l'amélioration des disponibilités en eau et en nutriments du sol.

L'amélioration des conditions hydriques sous ombrage est imputable aussi bien à la réduction de l'ETP (SCHOCH, 1966 ; LE HOUÉROU, 1980) qu'à une meilleure infiltration (TIEDEMAN et KLEMMEDSON, 1977 ; KESSLER et BREMAN, 1991).

L'augmentation de la fertilité du sol sous couvert ligneux est largement due à la chute du feuillage des arbres (BELSKY et al., 1989; CLAUDE et al., 1991). BERNHARD-REVERSAT et POUPON (1980) pensent cependant que l'enrichissement du sol sous ombrage serait plus dû à la décomposition de la végétation herbacée qu'à la litière des arbres, tandis que MENAUT et al. (1985) rapportent que le turn-over des racines est probablement plus important que l'accumulation de la litière épigée. L'aptitude de certaines espèces, notamment les légumineuses et plus particulièrement les Acacia (CAMPA et al., 1998), à fixer l'azote atmosphérique de l'air a aussi été évoquée pour expliquer le relèvement du niveau de fertilité du sol sous ombrage (GÉRAKIS et TSANGARAKIS, 1970; SHEARER et al., 1983). Bien que ce mécanisme soit possible, diverses raisons telles l'amélioration de la teneur en azote sous des espèces non légumineuses comme Balanites et Adansonia (BERNHARD-REVERSAT, 1982), la limitation de la fixation de l'azote dans les conditions sahéliennes en raison du faible niveau de phosphore et des sévères conditions d'alimentation en eau (HÖGBERG, 1986) conduisent à limiter son effet.

Conclusion

Dans les conditions sahéliennes du Ferlo sénégalais, l'arbre, et plus particulièrement Acacia raddiana dans le cadre de ce travail, en améliorant les conditions édapho-climatiques sous ombrage, favorise le développement de la strate herbacée. Celui-ci se traduit par l'augmentation significative de la richesse floristique, de la phytomasse épigée et hypogée et de la composition minérale. Cette action positive se répercute au niveau du système d'exploitation par une amélioration des conditions d'élevage, d'une part par son action à travers la strate herbacée (production, matières azotées digestibles, énergie) et, d'autre part, par son action propre (production de feuilles, apport de matière verte pendant 9 mois de l'année).

L'étude conduite sur l'influence de l'arbre sur le fonctionnement de la strate herbacée a donc montré un effet bénéfique de l'arbre en zone sahélienne. Des travaux réalisés en zones plus humides du Sénégal (800 à 1 200 mm de précipitations annuelles) montrent que ces résultats ne sont pas généralisables et qu'il existe des seuils de pluviosité et de recouvrement des arbres au-delà desquels l'effet bénéfique de l'arbre ne se manifeste plus.

Auteurs

M. Grouzis IRD, BP 434, 101 Antananarivo, Madagascar

L. E. Akpo UCAD, BP 5005, Dakar, Sénégal

Références bibliographiques

AKPO L. E.,

1993 – Influence du couvert ligneux sur la structure et le fonctionnement de la strate herbacée en milieu sahélien. Les déterminants écologiques. Orstom, TDM n° 93, 174 p.

AKPO L. E.,

1998 – Effet de l'arbre sur la végétation herbacée dans quelques phytocénoses au Sénégal. Variation selon un gradient climatique. Thèse doct. d'État, UCAD Dakar, 133 p.

AKPO L. E., GROUZIS M.,

1993 – Étude comparée de la phénologie de la végétation herbacée sous et hors couvert ligneux en milieu sahélien. Webbia, 47 (2): 1-15.

AKPO L. E., GROUZIS M.,

1996 – Influence du couvert sur la régénération de quelques espèces ligneuses sahéliennes (Nord-Sénégal, Afrique occidentale). Webbia, 50 (2): 247-263.

AKPO L. E., GROUZIS M., BA T.A.,

1995 – L'arbre et l'herbe au Sahel : effets de l'arbre sur la composition chimique des pâturages naturels du Nord-Sénégal (Afrique de l'Ouest). Revue Méd.Vét., 146 (10) : 663-670.

BELSKY A. J.,

1990 – Tree/grass ratios in East African savannas: a comparison of existing models. Journal of Biogeography, 17: 483-489.

BELSKY A. J., AMUNDSON R. G., DUXBURY J. M., RIHA S. J., ALI A. R., MWONGA S. M..

1989 – The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology, 26: 1005-1024.

BERHAUT J.,

1967 - Flore du Sénégal. Dakar, Clairafrique, 485 p.

BERNHARD-REVERSAT F.,

1982 – Biogeochemical cycle of nitrogen in a semi-arid savanna. Oikos, 38:321-332.

BERNHARD-REVERSAT F., POUPON H.,

1980 – « Nitrogen cycling in a soil-tree system in a Sahelian savanna, example of Acacia senegal ». In Rooswal T., ed.: Nitrogen cycling in West African ecosystem, Stockholm, SCOPE/UNEP, RSAS: 363-369.

Вонм W.,

1979 – Methods of studying root systems. Berlin, Springer-Verlag, Ecological studies 33, 188 p.

CAMPA C., GRIGNON C., GUEYE M., HAMON S.,

1998 – L'acacia au Sénégal. Paris, Orstom, coll. Colloque et Séminaires, 476 p.

CÉSAR J.,

1991 – Les facteurs de production herbacée des savanes humides d'Afrique tropicale. IV^e Congrès international des terres de parcours, Montpellier, France, 4 p.

CLAUDE J., GROUZIS M., MILLEVILLE P.,

1991 – Un espace sahélien : la Mare d'Oursi. Burkina Faso. Paris, Orstom, 241 p.

COUGHENOUR M. B., DELTING J. K., BAMBERG I. E., MUGAMBI M. M.,

1990 – Production and nitrogen responses of the African dwarf shrub *Indigofera spinosa* to defoliation and water limitation. *Oecologia*, 83:546-552.

FOURNIER C.,

1995 – Fonctionnement hydrique de six espèces ligneuses coexistant dans une savane sahélienne (Région du Ferlo, Nord-Sénégal). Paris, Orstom, TDM, 165 p.

FOWLER N.,

1986 – The role of competition in plant communities in arid and semi-arid regions. Ann. Rev. Ecol. Syst., 17:89-110.

GEORGIADIS N. J.,

1989 – Microhabitat variation in an African savanna: effects of woody cover and herbivores in Kenya. *Journal of Tropical Ecology*, 5:93-108.

GÉRAKIS P.A., TSANGARAKIS C.E.,

1970 – The influence of Acacia senegal on fertility of sand sheet « Goz » soil in the central Sudan. Plant Soil, 33:81-86.

GROUZIS M.,

1988 – Structure, productivité et dynamique des systèmes écologiques sahéliens (Mare d'Oursi, Burkina Faso). Paris, Orstom, coll. Études et Thèses, 336 p.

GROUZIS M., AKPO L. E.,

1993 – « Tree and grass interactions in Sahelian zone (Ferlo, Senegal) ».

In: Sustainable Development for our Common Future, International Conference on Desert Development, Mexico City, July 25-30, 20 p.

GROUZIS M., AKPO L. E.,

1997 – Influence of tree cover on herbaceous above- and below-ground phytomass in the Sahelian zone of Senegal. *Journal of Arid Environments*, 35: 285-296.

HÖGBERG P.,

1986 – Soil nutrient availability, root symbioses and tree species composition in tropical Africa: a review. J. Trop. Ecology, 2:359-372.

ISICHEI A. O., MUOGHALU J. I.,

1992 – The effects of tree canopy cover on soil fertility in a Nigerian savanna. Journal of Tropical Ecology, 8: 329-338.

KATER L. J. M., KANTE S., BUDELMAN A.,

1992 – Karité (Vitellaria paradoxa) and néré (Parkia biglobosa) associated with crops in South Mali. Agroforestry Systems, 18:89-106.

KELLMAN M.,

1979 – Soil enrichment by neo-tropical savanna trees. *J. Ecol.*, 67: 565-577.

KESSLER J. J.,

1992 – The influence of Karité (Vitellaria paradoxa) and néré (Parkia biglobosa) trees on sorghum production in Burkina Faso. Agroforestry Systems, 17: 97-118.

KESSLER J. J., BREMAN H.,

1991 – The potential of agroforestry to increase primary production in the Sahelian and Sudanian zones of West Africa. *Agroforestry Systems*, 13:41-62.

KNOOP W.T., WALKER B. H.,

1985 – Interactions of woody and herbaceous vegetation in a southern African savanna. *Journal of Ecology*, 73: 235-253.

LE HOUÉROU H. N.,

1980 – The role of browse in the Sahelian and Sudanian zones. In: Le Houérou H. N., ed.: Browse in Africa. The current state of knowledge, Addis Abeba, ILCA: 83-100.

LE HOUÉROU H. N.,

1993 – « Environmental aspects of fodder trees and shrubs plantation in the Mediterranean basin ». In Papanastasis V., ed.: Fodder trees and shrubs in the Mediterranean Production Systems: objectives and expected results of the EC research contract, Brussels, Commission of the European Communities, EUR 14459, y-205: 11-34.

LE HOUÉROU H. N., POPOV G. F.,

1981 – An ecoclimatic classification of intertropical Africa. Rome, FAO, Plant Production and Protection Paper, n° 31, 40 p.

LEBRUN J. P., STORK A. L.,

1992 – Énumération des plantes à fleurs d'Afrique tropicale. Genève, Conservatoire et Jardin botaniques, vol. I, 249 p., vol. II, 257 p.

MENAUT J. C., BARBAULT R., LAVELLE P., LEPAGE M.,

1985 – « African savannas: biological systems of humification and mineralisation ». In Tothill J. C., Mott J. C., eds: Ecology and management of the world savanna Aust, Cambera, Acad. Sci.: 14-32.

MORDELET P., MENAUT J. C.,

1995 – Influence of trees on above-ground production dynamics of grasses in a humid savanna. *Journal of Vegetation Science*, 6: 223-228.

NIZINSKI J., MORAND D., FOURNIER C.,

1992 – Le rôle du couvert ligneux sur le bilan hydrique d'une steppe (nord du Sénégal). *Cah. Orstom*, sér. Pédol., 27 (2): 225-236.

OVALLE C., AVENDANO J.,

1987 – Interactions de la strate ligneuse avec la strate herbacée dans les formations d'Acacia caven (Mol.) Hook. et Arn. au Chili. I. Influence de l'arbre sur la composition floristique, la production et la phénologie de la strate herbacée. Acta Oecologica, Oecol. Plant., 8 (4): 385-404.

OVALLE C., AVENDANO J.,

1988 – Interactions de la strate ligneuse avec la strate herbacée dans les formations d'Acacia caven (Mol.) Hook, et Arn, au Chili. 2. Influence de l'arbre sur quelques éléments du milieu. Acta Oecologica, Oecol. Plant., 9 (2): 113-134.

POISSONET J., CÉSAR J.,

1972 – Structure spécifique de la strate herbacée dans la savane à palmier ronier de Lamto (Côte d'Ivoire). Ann. Univ. Abidjan, sér. E, 5: 577-601.

SANFORD W.W., USMAN S., OBOT E. O., ISICHEI A. O., WARI M.,

1982 – Relationship of woody plants to herbaceous production in Nigerian savanna. *Trop. Agric.*, 59 (4):315-318.

Un orbre ou désert, Acacia raddiana

Sсносн Р. G.,

1966 – Influence sur l'évaporation potentielle d'une strate arborée au Sénégal et conséquences agronomiques. Agronomie tropicale, 11 : 1283-1290.

SCHUURMAN J. J., GOEDEWAGEN M. A. J.,

1971 – Methods for the examination of roots systems and roots. Wageningen, Centre for Agri. Pub. Doc., 86 p.

SHEARER G., KOHL D. H., VIRGINIA R.A., BRYAN B.A., SKEETENS J. L., NILSEN E.T., SHARIFI M. R., RUNDEL P.W.,

1983 – Estimates of N2-fixation from variations in the natural abundance of 15N in Sonoran desert ecosystems. *Oecologia*, 56: 365-373.

TIEDEMAN A. R., KLEMMEDSON J. O.,

1977 – Effect of Mesquite trees on vegetation and soils in the desert grassland. *J. Range Manag.*, 30: 361-367.

TRÉCA B., TAMBA S., AKPO L. E., GROUZIS M.,

1996 – Importance de l'avifaune sur les apports en azote et en phosphore dans une savane sahélienne du Nord-Sénégal. Rev. Ecol.. (Terre Vie), 51: 259-373.

VALENZA J., DIALLO K.,

1972 – Étude des pâturages du Nord-Sénégal. Études agrostologiques. IEMVT, Maisons-Alfort, 311 p.

VETAAS O. R.,

1992 – Micro-site effects of trees and shrubs in dry savannas. Journal of Vegetation Science, 3:337-344.

WALKER B. H. (éd.),

1987 – Determinants of tropical savannas. Oxford, IRL Press, IUBS Monograph series, n° 3, 155 p.

WALKER B. H., Noy-Meir I.,

1982 – « Aspects of the stability and resilience of savanna ecosystems ». In Huntley B. J., Walker B. H., eds: Ecology of tropical savannas, Berlin, Springer Verlag: 556-590.

WELTZIN J. F., COUGHENOUR M. B.,

1990 – Savanna tree influence on understory vegetation and soil nutrients in northwestern Kenya. Journal of Vegetation Science, 1:325-334.

La graine et la germination d'Acacia raddiana

P. Danthu J. Roussel M. Neffati

Résumé

Le tégument des graines d'A. raddiana a une structure anatomique typique des légumineuses qui induit une forte inhibition de la germination. Cela implique qu'une scarification naturelle (chocs, feu) ou artificielle (traitement mécanique ou chimique) du tégument est nécessaire pour permettre l'imbibition et la germination des graines. Cette forte inhibition tégumentaire explique aussi que les graines restent intactes après passage dans le tractus digestif des animaux sauvages ou domestiques qui les consomment.

Les semences d'A. raddiana peuvent conserver leur viabilité pendant plusieurs années, in situ ou en collections. Elles ont un comportement orthodoxe. La germination est optimale à une température comprise entre 20 et 35 °C, elle est peu perturbée par des contraintes hydriques ou salines fortes. Les graines d'A. raddiana semblent donc bien adaptées aux conditions d'aridité dans lesquelles l'espèce se développe.

La présente synthèse montre enfin que la maîtrise de la technologie des semences d'A. raddiana est suffisante pour envisager l'utilisation de cette espèce en reboisement.

Mots-clés:

TÉGUMENT, SCARIFICATION, CONSERVATION, DISPERSION, TEMPÉRATURE, CONTRAINTES HYDRIOUE ET SALINE, TECHNOLOGIE DES SEMENCES, SAHEL

Abstract

The seed tegument of A. raddiana has a typical anatomic structure of legumes which induces a high germination inhibition. This implies that a natural (shocks, fire) or artificial (mechanical or chemical processing) scarification of the tegument is required to allow soaking and germination of the seeds. This tegumental high inhibition accounts for the fact that seeds remain undamaged after passing through the digestive tract of wild or domestic animals which consume them. A. raddiana seeds may preserve their viability for several years, in situ or collectively. They have an orthodox behaviour. Optimum germination takes place at a temperature between 20 and 35 °C, and it is little affected by high water and saline stress. Therefore A. raddiana seeds seem to be well adapted to the arid conditions where the species develops.

Finally, the current synthesis shows that the control over seeding technology for A. raddiana is enough to envisage the use of the species for reforestation.

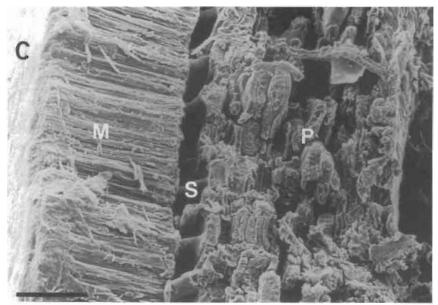
Keywords:

TEGUMENT, SCARIFICATION, PRESERVATION, DISPERSAL, TEMPERATURE, MOISTURE AND SALINE STRESS,
SEED TECHNOLOGY, SAHEL

Introduction

Acacia raddiana Savi est un arbre des régions arides et semi-arides, présent au nord et au sud du Sahara. Très résistant à la sécheresse, il se développe entre les isohyètes 50 et 1 000 mm (Le Floc'h et Grouzis, cet ouvrage)¹. Arbre à usages multiples, il est une des espèces majeures dans la zone sahélienne (Le Floc'h et Grouzis, loc.cit.). Son utilisation en reboisement peut être envisagée afin de mettre en place un système forestier durable. La sylviculture de cette espèce mérite donc d'être étudiée. En particulier, il est important de bien maîtriser les conditions de sa germination. Or celle-ci est régulée par des caractéristiques génotypiques (structure anatomique des téguments, aptitude à la déshydratation), mais aussi par les conditions environnementales (traitement avant semis, disponibilité en eau, présence de sel, température...) (SHARMA, 1973; LUSH et EVANS, 1980; GUTTERMAN, 1993).

Dans le présent chapitre, après un rappel sur la structure anatomique du tégument d'A. raddiana et sur l'inhibition qu'elle induit, nous aborderons les aptitudes à la conservation des graines, nous décrirons les modes de dissémination des semences, puis nous traiterons de quelques éléments de l'écologie de la germination. Enfin, nous tenterons de dégager les conséquences que ces résultats impliquent concernant la technologie des semences.

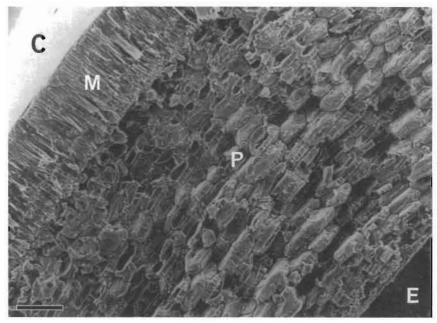

 [«] Acacia raddiana, un arbre des zones arides à usages multiples ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003: 21-58.

Structure du tégument

Depuis les travaux fort anciens de BECQUEREL (1907), il est très largement démontré que les graines de légumineuses ont des téguments imperméables à l'eau et à l'oxygène et nécessitent une scarification permettant l'imbibition et la germination (WERKER, 1980/1981; HANNA, 1984; CAVANAGH, 1987). Cette dormance d'origine tégumentaire, ou plus exactement cette inhibition tégumentaire, puisque l'embryon, débarrassé du tégument de la graine, est apte à germer (CÔME, 1970), peut différer la germination d'une graine pendant plusieurs années (CLEMENS et al., 1977; TYBIRK et al., 1994).

La structure histologique des graines d'A. raddiana est caractéristique de l'ensemble des légumineuses (PITOT, 1935 ; CÔME, 1970 ; VASSAL, 1975 ; LUSH et EVANS, 1980 ; WERKER, 1980/1981 ; CAVANAGH, 1987). Le tégument des graines a une épaisseur au niveau de l'écusson, variant entre 220 et 260 μ m. Comparé aux téguments des autres espèces du genre, celui d'A. raddiana a une épaisseur moyenne : le tégument de A. drummondii (acacia australien) est épais de 50 μ m (CAVANAGH, 1987) et celui de A. sieberana, d'environ 700 μ m. Il comporte, de l'extérieur vers l'intérieur de la graine :

- une cuticule cireuse fine ;
- une couche de cellules pallissadiques, les cellules de Malpighi (photographie 1) disposées radialement et dont l'épaisseur est comprise entre 80 et 90 μm ;



 ¬ Photographie I

 Vue en microscopie électronique à balayage d'une coupe de tégument d'A. raddiana
 C : cuticule ; M : couche des cellules de Malpighi ; S : cellules en sabliers ;

 P : tissus parenchymateux ; (les barres représentent 50 µm).

- une couche de cellules en forme de sablier, les ostéosclérides, nettement séparées les unes des autres (photographie I);
- un tissu parenchymateux interne composé de cellules à parois cellulosiques dont l'épaisseur est comprise entre l 30 et 180 μm (photographie 2).

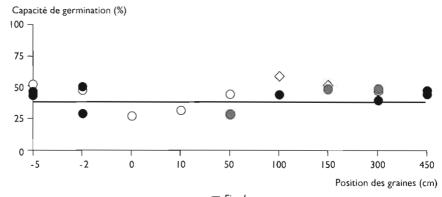
∇ Photographie 2
Vue en microscopie électronique à balayage d'une coupe de tégument d'A. raddiana
C : cuticule ; M : couche des cellules de Malpighi ;
P : tissus parenchymateux ; E : embryon (cotylédon), (les barres représentent 50 μm).

L'imperméabilité des graines est due en grande partie, aux cellules pallissadiques constituées d'hémicellulose et de pectine qui deviennent dures et hygrophobes dans les derniers stades de maturation des graines (WERKER, 1980/1981; TRAN et CAVANAGH, 1984). Les ostéoslérides auraient un rôle dans l'absorption des déformations mécaniques et donc dans la résistance des graines aux chocs (TRAN et CAVANAGH, 1984).

Il faut aussi noter que la structure du tégument des graines n'est pas uniforme. Il existe des points particuliers, le hile (cicatrice du funicule) et, surtout, le strophiole (lentille), qui sont des zones de faiblesse et les principaux points initiaux d'entrée de l'eau après scarification comme l'ont montré BALLARD (1973), TRAN (1979) et HANNA (1984) sur diverses légumineuses. La levée de l'inhibition tégumentaire d'une graine n'est donc pas nécessairement réalisée par la destruction de la totalité du tégument séminal. Elle peut l'être par une scarification ponctuelle du tégument et en particulier du strophiole. Celle-ci peut se produire naturellement en réponse à des chocs mécaniques, chimiques ou thermiques (BALLARD, 1973).

L'inhibition tégumentaire, sa levée

L'inhibition tégumentaire des graines constitue un facteur adaptatif important pour la survie de l'espèce, puisqu'elle permet le maintien d'un stock de graines viables dans le sol (Nongonierma, 1978 b ; Coe et Coe, 1987 ; Tybirk, 1991). Ces graines peuvent survivre ainsi plusieurs années, passer sans dommage des périodes défavorables à la germination et à la survie de la plantule – sécheresse, feux de brousse, par exemple – et germer lorsque les conditions écologiques deviennent favorables (Tybirk, 1991).


Mais un lot de graines n'est pas homogène et entre 10 % et 40 % des graines d'A. raddiana sont aptes à germer sans prétraitement (tabl. l, fig. 1). Toutes les autres graines nécessitent une scarification du tégument afin de le rendre perméable à l'eau. In situ, la scarification peut se faire par des chocs (PEARSON et ISON, 1987; TYBIRK, 1991) ou par passage du feu (SABITI et WEIN, 1987). Certains auteurs comme HALEVY (1974) estiment que la digestion par les animaux a un effet scarificateur (ce point sera discuté plus loin).

√ Tableau I – Taux de germination des graines d'Acacia raddiana dix jours après le semis en fonction du prétraitement appliqué aux graines.

Prétraitement des graines	Durée de prétraitement	Taux de germination (%)
Aucun		8 c
Scarification manuelle		95 a
Eau froide	6 h	9 c
	12 h	6 c
	24 h	II c
	48 h	9 c
	72 h	6 c
	120 h	5 c
Eau chaude	6 h	3 c
	12 h	3 c
	24 h	4 c
	48 h	8 c
	72 h	12 c
	120 h	4 c
Eau bouillante	5 s	6 c
	10 s	7 c
	30 s	3 c
	60 s	5 c
	120 s	9 c
Acide sulfurique	30 mn	37 b
	60 mn	96 a
	120 mn	97 a
	240 mn	97 a

Test de Newman-Keuls au seuil de 5 %.

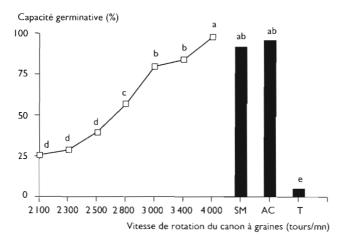
Le traitement à l'eau chaude consiste à plonger les graines dans l'eau bouillante qu'on laisse refroidir.

∇ Fig. I

Effet de la position des graines et de l'intensité des feux sur la germination des graines d'A. raddiana comparée à celle d'un témoin non scarifié (trait plein).

Intensité du feu faible (en blanc), moyenne (en gris), forte (en noir) ; un cercle indique que la différence avec le témoin n'est pas significative, un losange indique une différence significative ; test au seuil de 5 %.

Une étude récente (DANTHU et al., 2002) a porté sur l'impact des feux de brousse sur la germination de quelques acacias africains. Deux paramètres principaux ont été étudiés. Le premier a été la position des graines : (i) plus ou moins profondément enfouies dans le sol, (ii) sur le sol ou (iii) en suspension dans le tapis herbacé ou la litière après dissémination. Le second paramètre pris en compte est l'intensité du feu, caractérisée par la quantité de biomasse combustible (essentiellement composée de paille de Schoenefeldia gracilis Kunth) : 1,3 et 5 t.ha⁻¹. Concernant A. raddiana, les résultats obtenus montrent que la viabilité des graines enfouies dans le sol n'est pas altérée par le passage d'un feu quelle que soit son intensité. Il en est de même pour les graines, posées sur le sol ou en suspension dans le tapis herbacé ou la litière, si le feu est de faible intensité. Dans le cas de feux d'intensité moyenne, la viabilité des graines est significativement réduite si elles sont situées entre les niveaux 0 (posées sur le sol) et 50 cm au-dessus du sol. Si le feu est de forte intensité, les graines situées entre 0 et 3 mètres au-dessus du sol sont endommagées.


La question est alors de savoir si dans les cas où le passage du feu n'entraîne pas la mort des graines, il peut constituer un stimulus suffisant pour lever la dormance des semences. La figure I montre que le taux de germination des graines d'A. raddiana est du même ordre de grandeur que celle des graines témoins n'ayant subi aucun traitement préalable.

Dans deux cas seulement (lorsque les graines situées à 1 et 1,5 m au dessus du sol ont été exposées à un feu de faible intensité), la germination est significativement meilleure que pour le témoin. On peut noter cependant que la fenêtre où les chocs thermiques ont un effet scarificateur est très étroite. De plus, les résultats obtenus restent très nettement inférieurs à ceux mesurés après une scarification

manuelle ou chimique (tabl. I). Ce comportement peut être rapproché de l'absence d'effet scarificateur mis en évidence sur ces espèces après passage par le tractus digestif de divers ruminants domestiques (DANTHU et al., 1992). Il est une preuve supplémentaire de l'extrême dureté de ces graines, qui est une adaptation aux conditions écologiques régnant en zone sèche (GUTTERMAN, 1993).

Le tableau I, inspiré des travaux antérieurs de KARSCHON (1975), BEBAWI et MOHAMED (1985), DANTHU et al. (1996 a) et TEKETAY (1996) sur des graines d'A. raddiana, permet de comparer les effets de traitements potentiellement scarificateurs. Le trempage des graines dans l'eau, quelle que soit sa durée ou sa température, n'est d'aucune efficacité pour lever l'inhibition tégumentaire. Les traitements les plus efficaces sont la scarification manuelle, qui consiste en l'ablation de quelques mm² de tégument de la graine à l'aide d'un sécateur, et le trempage dans une solution concentrée (95 %) d'acide sulfurique pendant une durée d'une heure au minimum.

L'utilisation du « canon à graines » dont le principe consiste à projeter les graines contre une paroi métallique induisant une fissuration ou une fracture du tégument des semences (POULSEN et STUBSGAARD, 1995) donne des résultats satisfaisants. Les taux de germination dix jours après le semis des graines traitées par le canon tournant à la vitesse de 4 000 tr.mn⁻¹ sont aussi bons que ceux obtenus après scarification manuelle ou traitement par l'acide sulfurique (fig. 2). Cela n'est pas toujours le cas, comme l'ont montré DIALLO et al. (1996) sur Faidherbia albida, pour lequel les taux de germination obtenus après passage dans le canon à graines restent toujours significativement inférieurs à ceux obtenus après scarification acide.

∇ Fig. 2
 Influence de la vitesse de rotation du canon à graines sur la germination des graines d'A. raddiana.

T : témoin, SM : graines scarifiées manuellement, AC : graines scarifiées par l'acide sulfurique ; test de Newman-Keuls au seuil de 5 %.

Viabilité des graines, aptitude à la conservation

Depuis les travaux de ROBERTS (1973) complétés par ceux de ELLIS et al. (1990), on distingue classiquement trois catégories de semences quant à leur aptitude à la conservation : orthodoxes, intermédiaires et récalcitrantes. Les premières peuvent se conserver à des températures négatives si leur teneur en eau est inférieure à 10 %, alors que les graines récalcitrantes d'origine tropicale ne survivent pas à la déshydratation et sont tuées par des températures inférieures à 10-15 °C. Les graines intermédiaires ont un comportement médian (BONNER, 1990).


Les graines d'A. raddiana récoltées à maturité dans différents sites sénégalais ont une teneur en eau comprise entre 5 et 7 % (par rapport au poids de matière fraîche). Les résultats présentés au tableau II montrent que les graines stockées à - 18 °C conservent leur viabilité (96 % des graines germent après deux ans de stockage). Ces données permettent donc de classer indubitablement A. raddiana parmi les espèces orthodoxes, comme c'est d'ailleurs le cas pour la majorité des légumineuses (HONG et ELLIS, 1996).

On peut aussi noter que des expériences menées au Sénégal (DANTHU et al., 1996 a) ont montré (fig. 3, tabl. II) qu'il est possible de conserver des graines d'A. raddiana scarifiées mécaniquement ou chimiquement pendant au moins cinq ans sans perte de viabilité, à la condition sine qua none que cette conservation soit effectuée à basse température (- 18 ou 5 °C). À température ambiante, (20-35 °C), la viabilité des graines ainsi traitées devient très faible ou nulle dès le dix-huitième mois de stockage, en particulier lorsqu'elles sont scarifiées chimiquement (tabl. II).

 ∇ Tableau II – Capacité germinative après deux ans de stockage des graines d'A. raddiana scarifiées avant conservation, en fonction du prétraitement et de la température de conservation.

	Conditions de conservation			
Prétraitement des graines	- 18 °C	+5°C	T. ambiante	
Aucun	96 a	94 a	80 a	
Acide sulfurique	97 a	97 a	5 d	
Scarification manuelle	93 a	92 a	38 Ь	
Canon à graines	91 a	95 a	24 c	

Le lot témoin a été scarifié par l'acide sulfurique au moment du semis. Test de Newman-Keuls au seuil de 5 %.

Effets des conditions de stockage et de l'état des graines (intactes ou scarifiées) sur la germination des graines d'A. raddiana.

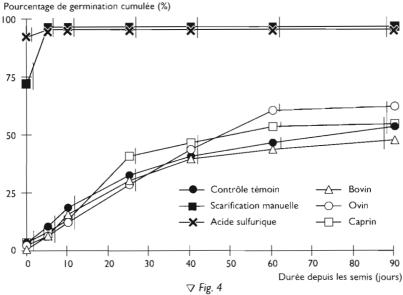
CF : chambre froide (+ 5 $^{\circ}$ C) ou TA : température ambiante (20-35 $^{\circ}$ C) ; test de Newman-Keuls au seuil de 5 % à chaque date de mesure.

Dispersion des graines : rôle des mammifères

COE et COE (1987) ont émis l'hypothèse que les espèces d'acacias à graines discoïdes et gousses déhiscentes comme A. senegal seraient adaptées à une dispersion par le vent, alors que les espèces à graines sphériques et dures et à gousses indéhiscentes du type d'A. nilotica assureraient leur dispersion par les herbivores qui les consommeraient.

Comparée à ces deux espèces, A. raddiana a une position intermédiaire : graines aplaties et gousses plus ou moins tardivement déhiscentes (NONGONIERMA, 1977, 1978 a). A. raddiana est cependant classée parmi les espèces dont la dissémination des graines est essentiellement réalisée par les mammifères sauvages (HALEVY, 1974; LAMPREY et al., 1974; COE et COE, 1987; MILLER, 1995) ou domestiques (DANTHU et al., 1996 b).

La question est alors de savoir si le passage dans le tractus digestif des ruminants favorise ou non la germination en levant l'inhibition tégumentaire. HALEVY (1974) estime que la germination des graines d'A. raddiana consommées par des gazelles est améliorée, alors que LAMPREY et al. (1974) montrent que la plupart des graines d'A. tortilis passent sans altération dans le tractus digestif des mammifères. MILLER (1995) rapporte qu'une partie importante des graines ingérées est détruite et que la proportion de celles qui survivent au passage par le tractus digestif augmente avec la taille du mammifère concerné.


Les données du tableau III tirées de Danthu et al. (1996 b) attestent effectivement que la proportion de graines intactes après passage dans le tractus digestif est très significativement plus importante chez les bovins que chez les ovins ou les caprins. Elles montrent aussi que la proportion de graines récupérées intactes varie avec la dureté des graines. Les graines dont les téguments sont les plus durs comme celles d'A. nilotica adansonii sont moins altérées par la mastication et l'attaque des sucs digestifs que les graines ne présentant qu'une très faible inhibition tégumentaire. Cette dernière situation est celle d'A. senegal, dont il a été prouvé que les téguments séminaux sont perméables (DANTHU et al., 1992). A. raddiana a une position intermédiaire entre ces deux espèces.

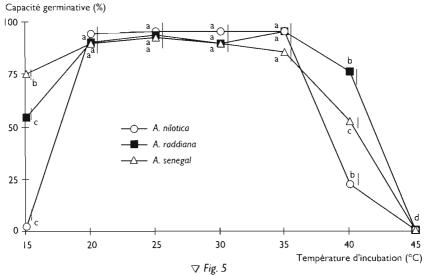
 ∇ Tableau III – Proportion de graines récupérées après passage dans le tractus digestif de divers ruminants domestiques.

	Bovins	Ovins	Caprins
A. raddiana	86 A b	28 B a	27 В ь
A. nilotica	99 A a	31 B a	51 B a
A. senegal	33 Ac	l Bb	I Bc

Test de Newman-Keuls au seuil de 5 %, appliqué à chaque ligne (lettres majuscules) et à chaque colonne (lettres minuscules).

La figure 4 montre que l'effet scarificateur du passage par le tractus digestif de divers mammifères est à peu près nul pour A. raddiana. Les graines recueillies dans les fèces de bovins, d'ovins ou de caprins ont la même dynamique de germination que des graines intactes (environ les deux tiers ont germé trois mois après le semis), alors que les graines scarifiées par l'acide sulfurique ou manuellement germent complètement en moins de 10 jours.

Effet du passage dans le tractus digestif de quelques mammifères domestiques sur la germination des graines d'A. raddiana.


Test de Newman-Keuls au seuil de 5 % à chaque date de mesure.

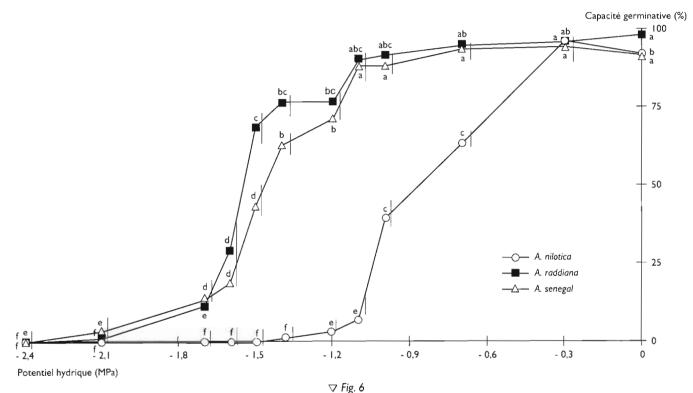
L'ingestion et l'excrétion par les mammifères des graines d'A. raddiana n'améliorent donc pas leur aptitude à germer. Par contre, ce passage par le tractus digestif représente un facteur de dissémination important, puisque les graines peuvent séjourner plus de cinq jours dans le tractus digestif des animaux et ainsi être transportées le long des parcours sur des distances importantes estimées entre 50 et 80 km (DANTHU et al., 1996 b).

Écologie de la germination

Dans cette partie, l'influence de trois facteurs environnementaux (température, lumière et contrainte hydrique) sur la germination des graines d'A. raddiana est étudiée.

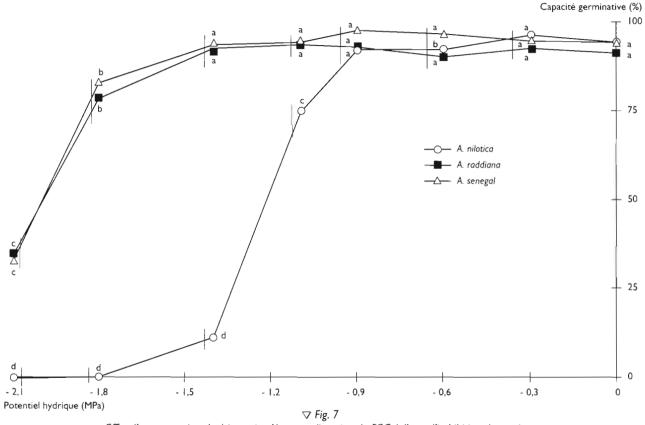
La figure 5 montre que la germination d'A. raddiana est optimale (supérieure à 90 %) dans une gamme de températures comprises entre 20 et 35 °C. Il en est de même pour A. senegal et A. nilotica. Les températures de 15 et 40 °C sont sub-optimales (germination de 50 à 75 % des graines). Aux températures élevées (≥ 45 °C), aucune graine ne germe. A. raddiana semble avoir une amplitude de germination plus importante que A. senegal et surtout que A. nilotica. Ainsi, à la température de 15 °C, A. raddiana germe significativement mieux que A. nilotica mais moins bien que A. senegal et à 40 °C, A. raddiana germe mieux que les deux autres espèces. Ce résultat confirme les conclusions de TEKETAY (1996), qui indiquent que la majorité des légumineuses de zones sèches germent à des températures comprises entre 15 et 40 °C, correspondant aux températures qui prévalent dans les aires arides ou semi-arides. Un essai a comparé la capacité germinative des graines d'A. raddiana à la lumière du jour et à l'obscurité totale. Les résultats obtenus ne montrent aucune différence significative (80 et 78 %, respectivement). La germination des graines d'A. raddiana n'est donc pas sensible à la lumière. Cette constatation confirme que, comme la plupart des légumineuses (CHOUARD, 1954), A. raddiana a des semences non photosensibles.

Effet de la température d'incubation sur la germination des graines d'A. raddiana, A. senegal et A. nilotica adansonii. Test de Newman-Keuls au seuil de 5 % à chaque température.


L'effet d'une contrainte hydrique ou saline sur la germination d'A. *raddiana* a été étudié par NDOUR et DANTHU (1998). Ces auteurs montrent que A. *raddiana* est une des espèces d'acacias africains dont la germination est la moins perturbée par la présence de sel. Le taux de germination n'est pas affecté par des concentrations salines de 15 ou 17,5 g.l⁻¹ et ne s'annule que pour des concentrations en sel

proches de celle de l'eau de mer (35 g.l⁻¹ correspondant à un potentiel hydrique, ψ , de - 2,1 MPa) (fig. 6). A. senegal a une réponse sensiblement identique, alors que A. nilotica adansonii est très nettement plus sensible (germination perturbée dès 5 g.l⁻¹ et nulle dès 25 g.l⁻¹). Lorsque les graines d'A. raddiana et d'A. senegal sont soumises à une contrainte hydrique simulée par adjonction de polyéthylène glycol (PEG) à l'eau d'imbibition, leur germination n'est significativement inférieure à celle des témoins (germination en absence d'osmoticum) que pour un potentiel hydrique inférieur à - 1,8 MPa. Si ψ = -2,1 MPa, un quart environ des graines germent encore (fig. 7). Là encore, A. nilotica se montre plus sensible au stress hydrique que les deux autres espèces. Ces résultats confirment donc que la germination d'A. raddiana est possible sous de plus fortes contraintes hydriques ou salines que celles mesurées pour d'autres espèces d'acacias (COUGHENOUR et DETLING, 1986 ; SINGH et al., 1991 ; NDOUR et DANTHU, 1998).

Ces différents résultats semblent mettre en évidence une meilleure tolérance d'A. raddiana et d'A. senegal aux conditions environnementales limites, basses et hautes températures, salinité du milieu ou sécheresse, en comparaison avec A. nilotica. Cependant, NDOUR et DANTHU (1998) montrent que l'aptitude à germer en conditions de stress hydrique ou salin n'est pas obligatoirement représentative de l'écologie de la plante adulte, rejoignant ainsi les constats de SHARMA (1973) ou de SY et al. (2001). Cette aptitude serait plus indicatrice de stratégies d'installation des différentes espèces. Pour A. raddiana, la capacité de germer sous de fortes contraintes hydriques ou salines procure à l'espèce un net avantage compétitif par rapport aux autres espèces.


Conséquences pour la technologie des semences

L'ensemble des résultats qui précèdent a donc montré que les graines d'A. raddiana ont des téguments durs induisant une inhibition profonde de la germination. Par ailleurs, ils ont mis en évidence le comportement orthodoxe des graines pendant le stockage. Ces caractères, qui représentent des facteurs adaptatifs aux zones sèches, peuvent être soit des atouts, soit des inconvénients aux yeux du forestier. Ainsi, si le comportement orthodoxe des graines d'A. raddiana facilite la collecte et le stockage des semences, l'inhibition tégumentaire est un problème pour le pépiniériste. En effet, elle induit une germination erratique et étalée dans le temps incompatible avec la production de plants à moyenne ou grande échelle (ROUSSEL, 1995), car le reboiseur recherche une germination homogène et synchrone des graines. C'est pourquoi de nombreux travaux ont eu pour objectif de mettre au point des méthodes contrôlées de levée de l'inhibition tégumentaire des graines.

Effet d'une contrainte hydrique simulée par adjonction de sel à l'eau d'imbibition des graines sur la germination d'A. raddiana, A. senegal et A. nilotica adansonii.

Test de Newman-Keuls au seuil de 5 %.

Effet d'une contrainte hydrique simulée par adjonction de PEG à l'eau d'imbibition des graines sur la germination d'A. raddiana, A. senegal et A. nilotica adansonii.

Test de Newman-Keuls au seuil de 5 %.

La méthode la plus efficace pour lever cette dormance tégumentaire consiste en un trempage dans une solution d'acide sulfurique concentré pendant une heure environ. La scarification manuelle peut être aussi employée. Mais ces méthodes posent le problème de leur utilisation à grande échelle par les structures de développement. En effet, la scarification acide requiert une compétence et un équipement souvent absents (BELLEFONTAINE, 1993) et la scarification manuelle ne peut s'appliquer qu'à de petits lots de graines.

Le passage d'un feu courant n'est pas un élément inducteur de la germination des semences d'A. raddiana. Ce constat implique donc qu'en zone de savane sèche, il n'est pas possible d'envisager le feu comme un auxiliaire du reboisement ou de la régénération des peuplements de cette espèce.

C'est pourquoi, des moyens fiables et sans risque de produire des plants d'A. raddiana dans des structures à faible technicité ont été recherchés. La scarification par le canon à graines, méthode rapide et sans danger peut être préconisée. Une autre solution pourrait consister à faire assurer la scarification, la conservation et la diffusion des graines « prêtes à l'emploi » par un centre semencier ou un laboratoire bien équipé (canon à graines, chambre froide...). Un essai de vulgarisation mené dans le cadre du Projet national de semences forestières du Sénégal a d'ailleurs montré une très bonne acceptation d'un tel matériel végétal de la part des pépiniéristes villageois sénégalais (Bauwens, communication personnelle).

La germination des graines d'A. raddiana est favorisée par une température comprise entre 20 et 35 °C. Pour les essais de laboratoire, on peut donc préconiser de faire germer les semences à une température moyenne de 30 °C. Les graines étant non photosensibles, l'incubation peut être réalisée à l'obscurité. De plus, A. raddiana n'est pas sensible aux contraintes hydriques et salines, ce qui rend possible son élevage dans des conditions rustiques. Les techniques de propagation à partir de graines sont donc maîtrisées. Par ailleurs, l'élevage et la gestion des plants jusqu'à leur installation au champ ont fait l'objet de nombreuses mises au point (ROUSSEL, 1995 et présent ouvrage)².

Conclusion

Cette revue a donc permis de faire le point sur les connaissances concernant la graine et la germination d'A. raddiana. Elle met en lumière le fait que de nombreux aspects concernant l'écologie et la physiologie de la germination de cette espèce sont maintenant bien connus. Un paquet technologique complet, fiable, permettant la production de plants d'A. raddiana soit dans des systèmes à grande échelle (plantations en régie), soit dans des structures à faible technicité (plantations villageoises), est donc disponible.

^{2. «} Élevage en pépinière, mise en place et entretien des plantations d'Acacia raddiana en Afrique de l'Ouest ». In Grouzis M., Le Floc'h E., éd.: Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003 : 301-307.

Cependant, et malgré son importance écologique, A. raddiana représente moins de I % des reboisements au Sénégal (65 000 plants produits sur un total supérieur à 6,7 millions d'après les statistiques de la Direction des eaux, forêts, chasse et conservation des sols [1996]). Le facteur limitant la diffusion de cette espèce n'est donc pas technique, mais relève plutôt de la politique forestière, de contraintes économiques et/ou sociologiques.

Auteurs

P. Danthu

CIRAD-Forêt, BP 853, Antananarivo 101, Madagascar

J. Roussel

Le Chatellier, 35133 Fougères, France

M. Neffati

Institut des régions arides, 4119 Médenine, Tunisie.

Références bibliographiques

BALLARD L.A.T.,

1973 – Physical barriers to germination. Seed Sci. & Technol. 1: 285-303.

BEBAWI F. F., MOHAMED S. M.,

1985 – The pretreatment of six Sudanese acacias to improve their germination response. Seed Sci. & Technol., 13:111-119.

BECQUEREL P.,

1907 – Recherches sur la vie latente des graines. Ann. Sc. Nat. Bot., 13:193-311.

BELLEFONTAINE R.,

1993 – « Prétraitements des semences forestières ». In : Les problèmes de semences forestières, notamment en Afrique, Leiden, Backhuys Publishers : 143-153.

BONNER F.T.,

1990 – Storage of seeds: potential and limitations for germplasm conservation. Forest Ecology and Management, 35: 35-43.

CAVANAGH T.,

1987 – « Germination of hard-seeded species (Order Fabales) ». In: Germination of Australian native plant seed, Melbourne, Inkata Press: 58-70.

CHOUARD P.,

1954 — Dormances et inhibitions des graines et des bourgeons. Préparation au forçage. Thermopériodisme. Paris, C.D.U., 157 p.

CLEMENS J., JONES P. J., GILBERT N. H.,

1977 – Effect of seed treatments on germination in *Acacia*.

Aust J. Bot., 25: 269-276.

COE M., COE C.,

1987 – Large herbivores, Acacia trees and bruchid beetles. South African Journal of Science, 83: 624-635.

CÔME D.,

1970 – Les obstacles à la germination. Paris, Masson & Cie, 162 p.

COUGHENOUR M. B., DETLING, J. K.,

1986 – Acacia tortilis seed germination responses to water potential and nutrients. Afr. J. Ecol., 24: 203-205.

DANTHU P., ROUSSEL J., DIA M., SARR A.,

1992 – Effect of different pretreatments on germination of Acacia senegal seeds. Seed Sci. & Technol., 20: 111-117.

DANTHU P., GAYE A., ROUSSEL J., SARR A.,

1996 a – « Long-term conservation of seed pretreated by sulfuric acid ». In: Innovation in tropical tree seed technology, Copenhague, Danida Forest Seed Centre: 37-44.

DANTHU P., ICKOWICZ A., FRIOT D., MANGA D., SARR A.,

1996 b – Effet du passage par le tractus digestif des ruminants domestiques sur la germination des graines de légumineuses ligneuses des zones tropicales sèches. Revue Elev. Méd. vét. Pays trop., 49: 235-242.

DANTHU P., NDONGO M., DIAOU M., THIAM O., SARR A., DEDHIOU B., OULD MOHAMED VALL A.,

2002 – Impact of bush fire on germination of some West African acacias. Forest Ecology and Management, 173:1-10.

DIALLO I., DANTHU P., SAMBOU B., DIONE D., GOUDIABY A., POULSEN K.,

1996 – Effects of different pretreatments on the germination of Faidherbia albida (Del.) A. Chev. seeds. International Tree Crops Journal, 9:31-36.

Direction des eaux, forêts, chasse et conservation des sols (DEFCCS),

1996 – Campagne nationale de reboisement. Dakar, Bilan 1995, Prévisions 1996, 56 p.

ELLIS R. H., HONG T. D., ROBERTS E. H.,

1990 – An intermediate category of seed storage behaviour? *Journal of Experimental Botany*, 41:1167-1174.

GUTTERMAN Y.,

1993 – Seed germination in desert plants. Adaptations of desert organisms. Berlin, Springer-Verlag, 253 p.

HALEVY G.,

1974 – Effects of gazelles and seed beetles (Bruchidae) on germination and establishment of Acacia species. Israel Journal of Botany, 23: 120-126.

HANNA P.J.,

1984 – Anatomical features of the seed coat of *Acacia kempeana* (Mueller) which relate to increased germination rate induced by heat treatment.

New Phytol., 96: 23-29.

Hong T. D., Ellis R. H.,

1996 – A protocol to determine seed storage behaviour. Rome, IPGRI Technical Bulletin I, IPGRI, 64 p.

KARSCHON R.,

1975 – Seed germination of Acacia raddiana Savi and A. tortilis Hayne as related to infestation by bruchids. Bet Dagan, Agricultural Research Organization, Leaflet 52, 9 p.

LAMPREY H. F., HALEVY G., MAKACHA S.,

1974 – Interactions between Acacia, bruchid seed beetles and large herbivores. E. Afr. Wildl. J., 12:81-85.

LUSH W. M., EVANS L.T.,

1980 – The seed coats of cowpeas and other grain legumes: structure in relation to function. *Field Crops Research*, 3: 267-286.

MILLER M. F.,

1995 – Acacia seed survival, seed germination, and seedling growth following pod consumption by large herbivores and seed chewing by rodents.

Afr. J. Ecol., 33:194-210.

NDOUR P., DANTHU P.,

1998 – « Effet d'un stress hydrique et salin sur la germination de quelques espèces africaines du genre Acacia ». In Campa C., Grignon C., Gueye M., Hamon S., éd.: L'acacia au Sénégal, Paris, Orstom, coll. Colloques et Séminaires: 105-122.

NONGONIERMA A,

1977 – Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale.

V. Caractères biométriques des fruits. Bulletin de l'IFAN, sér. A, 39 : 695-787.

Nongonierma A,

1978 a – Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale.

VI. Caractères biométriques des graines. Bulletin de l'IFAN, sér. A, 40 : 312-422.

NONGONIERMA A,

1978 b – Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale.

VII. Caractères biologiques des graines : la germination. *Bulletin de l'IFAN*, sér. A, 40 : 480-511.

PEARSON C. J., ISON R. L.,

1987 – Agronomy of grassland systems.Cambridge, Cambridge University Press,169 p.

Рітот А.,

1935 – Le tégument des graines de Légumineuses. Bulletin de la Société botanique de France, 82 : 307-308.

POULSEN K. M., STUBSGAARD F.,

1995 – Three methods for mechanical scarification of hardcoated seed. Humlebaek, Danida Forest Seed Centre, Technical note, n° 27, 15 p.

ROBERTS E. H.,

1973 – Predicting the storage life of seeds. Seed Sci. & Technol., 1: 499-514.

ROUSSEL J.,

1995 – Pépinières et plantations forestières en Afrique tropicale sèche. Dakar, ISRA-Cirad, 435 p.

SABITI E. N., WEIN R.W.,

1987 – Fire and Acacia seeds: a hypothesis of colonization success. Journal of Ecology, 74: 937-946.

SHARMA M. L.,

1973 – Simulation of drought and its effect on germination of five pasture species. *Agronomy Journal*, 65: 982-987.

SINGH C., KHAJURIA H. N., SINGH A., SHARMA R.,

1991 – Acacias for arid regions. Acta Botanica Indica, 19: 29-32.

SY A., GROUZIS M., DANTHU P.,

2001 – Seed germination of seven Sahelian leguminous species. Journal of Arid Environments, 49: 875-882.

TEKETAY D.,

1996 – Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia.

Forest Ecology and Management, 80: 209-223.

TRAN V. N.,

1979 – Effects of microwave energy on the strophiole, seed coat and germination of Acacia seeds.

Aust. J. Plant. Physiol., 6: 277-287.

Tran V. N., Cavanagh A. K.,

1984 – Structural aspect of dormancy. Seed physiology: 1-44.

TYBIRK K.,

1991 – Régénération des légumineuses ligneuses du Sahel. University of Aarhus, Botanical Institute, AAU Reports, n° 28, 86 p.

TYBIRK K, SCHMIDT L. H., HAUSER T.,

1994 – Notes on soil seed banks of African acacias. *Afr. J. Ecol.*, 32: 327-330.

VASSAL J.,

1975 – Histologie comparée des téguments séminaux dans quelques espèces d'acacias africains. Boissiera, 24: 285-297.

WERKER E.,

1980/1981 – Seed dormancy as explained by the anatomy of embryo envelopes. *Israel Journal of Botany*, 29: 22-44.

Insectes consommateurs des graines d'Acacia raddiana en Afrique de l'Ouest : les bruches

A. DELOBEL M. TRAN P. DANTHU

Résumé

Au sein de la guilde des insectes séminivores inféodés à Acacia raddiana en Afrique de l'Ouest, les Coléoptères Bruchidae sont les plus abondants. Ils sont étudiés ici sur la base de données actuelles et plus anciennes, mais non publiées. Six espèces de bruches ont été répertoriées, auxquelles s'ajoutent quatre espèces mentionnées dans la littérature mais non rencontrées lors de notre enquête. Une seule de ces espèces, Sulcobruchus sinaitus (Pic), ne possède à notre connaissance aucun autre hôte que A. raddiana; elle pond dans les gousses encore vertes, et les larves se nourrissent de graines en cours de maturation. Apparaissant plus tardivement, Caryedon longispinosus auct., qui vit aussi dans les graines d'Acacia senegal, est l'espèce la plus abondante, puisqu'elle représente plus de 60 % des bruches obtenues de 40 échantillons de graines de diverses provenances dans la zone sahélienne en Afrique de l'Ouest. Les autres espèces rencontrées dans les graines d'A. raddiana sont Bruchidius sahelicus auct., Bruchidius aurivillii Blanc et Caryedon acaciae (Gyll.). Les taux d'infestation s'accroissent de 9 % en moyenne pendant la première partie de la saison sèche (novembre à mars) à 78 % en moyenne en fin de saison sèche (avril-mai).

Mots-clés:

BRUCHES, CARYEDON, BRUCHIDIUS, SULCOBRUCHUS, TAUX D'INFESTATION, POPULATION, SURVIE.

Abstract

Within the guild of insects which feed in the seeds of Acacia raddiana in West Africa, Bruchidae (Coleoptera) are the most abundant. We studied them on the basis of recent data and also of older but unpublished records. Six seed-beetle species were recorded, to which may be added four species which are mentioned in the litterature, but could not be obtained again. To the best of our knowledge, only one of these species, Sulcobruchus sinaitus (Pic), has no other host than A. raddiana. It lays eggs in green pods and its larvae feed in maturing seeds. Caryedon longispinosus auct., a species which feeds also in A. senegal seeds, appears later and is the commonest species: it represents over 60% of all beetles obtained from 40 seed samples from various parts of the Sahelian zone in West Africa. Other species found in A. raddiana seeds include Bruchidius sahelicus auct, Bruchidius aurivillii Blanc and Caryedon acaciae (Gyll.). Infestation rates increase from 9% during the first part of the dry season (November to March) to 78% towards the end of the dry season (April-May).

Keywords:

SEED-BEETLES, CARYEDON, BRUCHIDIUS, SULCOBRUCHUS, INFESTATION RATE, POPULATION, CARRY-OVER.

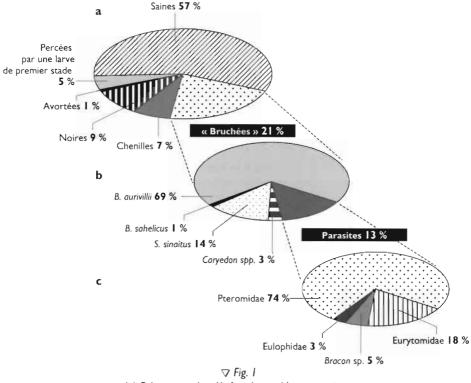
Introduction

Parmi les travaux ayant trait à la consommation des graines d'Acacia tortilis raddiana par les insectes, les plus marquants sont sans aucun doute ceux de DONAHAYE et al. (1966), réalisés en Israël sur A. tortilis spirocarpa et de ERNST et al. (1989) portant sur A. tortilis heteracantha au Botswana. Les taux de prédation des graines observés par ces auteurs sont d'une manière générale très élevés, souvent compris entre 70 et 100 %, et l'essentiel des dégâts est attribué à l'action des Coléoptères Bruchidae, couramment désignés sous le terme général de bruches (seed-beetles en anglais).

Le cortège des insectes ravageurs des organes reproductifs d'A. raddiana apparaît en fait comme un complexe particulièrement diversifié. Une partie des espèces concernées n'est pas encore décrite, une situation due au manque de spécialistes de nombreux groupes d'insectes. En dehors des insectes floricoles, pour lesquels nous ne disposons d'aucune donnée, on compte un grand nombre d'espèces se nourrissant des gousses vertes, des graines en formation, des graines mûres (avant et après dispersion).

Une faune entomologique variée, appartenant à des ordres différents, se nourrit des gousses en cours de développement. Les principaux ordres concernés sont les suivants :

- Lépidoptères : certaines chenilles consomment la cosse, d'autres se nourrissent des graines en formation ou en cours de maturation. La biologie de ces ravageurs est la plupart du temps inconnue, sans doute en raison des difficultés d'identification des différentes espèces. Au Sénégal, le principal ravageur des gousses vertes d'A. raddiana est une espèce indéterminée de Virachola (famille des Lycaenidae), dont la chenille pourvue de poils urticants consomme la gousse verte et les grains tendres.
- Homoptères : Nongonierma (1978) cite le Membracide Oxycaris caligula Capener sur fruits verts en Mauritanie. Grâce à ses pièces buccales de piqueur-suceur, ce type d'insecte prélève sa nourriture dans la graine en cours de croissance. Selon le stade de développement atteint au moment de la piqûre, l'attaque se traduit par un avortement complet ou la déformation de la graine.
- Hémiptères : la punaise Nemasus sp. est signalée par SOUTHGATE (1983).
- Coléoptères Bruchidae : certaines espèces insèrent leurs œufs dans le parenchyme des gousses en cours de développement (genre Sulcobruchus).


Un certain nombre d'insectes se nourrissent des graines en cours de maturation et des graines mûres. Ils appartiennent aux ordres des Coléoptères et des Hyménoptères :

- · Coléoptères Bruchidae :
- espèces déposant leurs œufs à la surface des gousses complètement développées (souvent le long de la suture) : genres Bruchidius et Caryedon;
- espèces pondant directement sur les graines après déhiscence de la gousse et après dispersion des graines : genre Caryedon.
- Hyménoptères séminivores : ERNST et al. (1989) et SOUTHGATE (1983) citent respectivement les chalcidiens *Oedaule* sp. et *Bruchophagus* sp. comme prédateurs de graines.

L'importance relative des différents facteurs de mortalité des graines a été analysée sur 5 échantillons de gousses récoltées à Potou, dans la zone des Niayes au Sénégal (16° 27'W, 15° 42' N), au cours du mois de décembre 1996. Ces échantillons sont représentatifs de la situation en début de saison sèche, lorsque mûrissent les premières gousses. Les résultats présentés ne sauraient en aucun cas être généralisés à d'autres périodes de l'année ou à d'autres situations géographiques.

Un total de I 403 graines obtenues de I53 gousses mûres fut maintenu en observation jusqu'à émergence de tous les insectes présents dans les graines au moment de leur récolte. L'examen des graines en fin d'expérimentation (fig. I a) montra que I9 (soit I %) étaient avortées, I00 (7 %) étaient en totalité ou en partie rongées par une chenille, I2I (9 %) étaient noires et présentaient un orifice de pénétration par une larve de bruche du premier stade, 293 (2I %) avaient donné naissance à une ou plusieurs bruches et présentaient un orifice de sortie. 870 graines étaient apparemment saines, mais 69 d'entre elles (5 % du total) avaient été infestées par une larve de bruche qui n'avait pu achever son développement et donner naissance à un adulte (la présence d'une larve morte

à l'intérieur de la graine se traduit par l'existence d'un orifice de pénétration larvaire décelable à la loupe binoculaire). Au total, seules 801 graines, soit 57 % du total, pouvaient être considérées comme saines.

(a) Fréquences des dégâts observables sur graines ;

- (b) fréquences des différentes espèces de bruches émergées ;
- (c) fréquences des différents Hyménoptères parasites de bruches. Potou, Sénégal, décembre 1996.

Les différentes espèces de bruches des graines d'Acacia raddiana en Afrique de l'Ouest

Les bruches rencontrées sur les différents acacias en Afrique de l'Ouest appartiennent à trois genres de Coléoptères Bruchidae: Bruchidius Schilsky, Sulcobruchus Chujo (autrefois pour partie Tuberculobruchus, voir BOROWIEC, 1987) et Caryedon Schönherr. À noter que les acacias américains hébergent quatre autres genres de Bruchidae: Acanthoscelides Schilsky, Merobruchus Bridwell, Mimosestes Bridwell, Stator Bridwell, qui, en dehors d'importations accidentelles, n'ont pas de représentants dans l'Ancien Monde.

Répartition géographique des espèces

La principale source d'information sur les bruches d'A. raddiana en Afrique de l'Ouest est constituée par le travail de Nongonierma (1978), qui a prospecté différentes régions de Mauritanie, du Burkina Faso, du Niger, du Mali et du Sénégal au cours des années 1967-1974. Les insectes récoltés furent identifiés par Decelle en 1972 et 1973, mais plusieurs espèces sont restées non décrites. Depuis, divers auteurs (dont Decelle lui-même) ont utilisé les noms de ces espèces restées in litt. en dépit du fait qu'ils ne sont pas valables au regard du Code international de nomenclature zoologique. Certaines des données de Nongonierma ont été reprises par Tybirk (1991).

Le tableau I présente les six espèces que nous considérons de manière certaine comme inféodées aux graines d'A. raddiana. Il est difficile de tirer des conclusions définitives d'observations très fragmentaires. On peut néanmoins remarquer que Caryedon longispinosus et C. sahelicus, observés seulement dans la partie occidentale de la zone sahélienne, semblent avoir une répartition plus limitée que les quatre autres espèces. On peut noter que Caryedon palaestinicus Southgate, très proche morphologiquement de C. longispinosus, est prédateur des graines d'A. raddiana dans une zone qui s'étend du Tchad à l'Égypte et au Moyen-Orient (DECELLE, 1979).

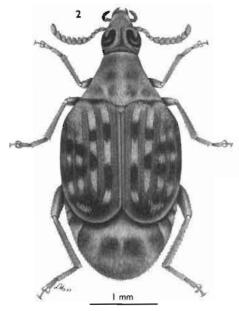
▼ Tableau I – Bruches obtenues d'Acacia raddiana en Afrique de l'Ouest.

Bruches	Répartition	Auteurs
Sulcobruchus sinaitus Daniel	Burkina Faso, Mauritanie Sénégal	Nongonierma (1978) Original
Bruchidius sahelicus auct.	Sénégal, Burkina Faso, Mauritanie, Mali Sénégal	Nongonierma (1978) Original
Bruchidius aurivillii Blanc	Sénégal, Mauritanie, Burkina Faso Sénégal	Nongonierma (1978) Original
Caryedon acaciae (Gyllenhal)	Sénégal, Mauritanie, Burkina Faso, Tchad Sénégal	DECELLE (1977) et Nongonierma (1978), sous le nom de <i>C. capicola</i> Original
Caryedon longispinosus auct.	Mauritanie Sénégal	NONGONIERMA (1978) Original
Caryedon sahelicus auct.	Mauritanie Non précisé Sénégal	Nongonierma (1978) Decelle (1979) Delobel et al. (1995)

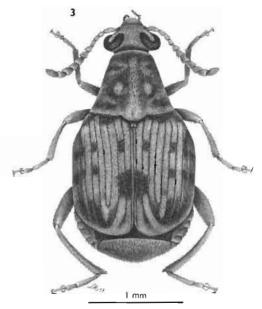
Trois espèces supplémentaires sont mentionnées par NONGONIERMA (1978) comme prédatrices des graines d'A. raddiana (tabl. II), mais leur extrême rareté dans les relevés de cet auteur laisse supposer qu'il peut s'agir d'adultes introduits accidentellement dans les échantillons. Nous avons obtenu ces espèces, ainsi que C. mauritanicus auct., des graines d'autres Acacia dans différentes régions du Sénégal, mais non d'A. raddiana. Une confirmation de leurs liens trophiques avec A. raddiana nous semble nécessaire.

Δ	Tableau II – Autres	bruches	signalées	comme	prédatrices	des	graines	d'A	raddiana.
----------	---------------------	---------	-----------	-------	-------------	-----	---------	-----	-----------

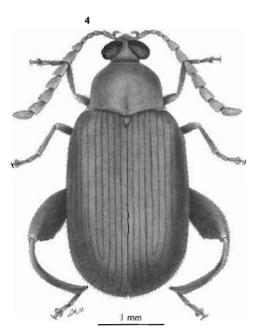
Bruches	Répartition	Auteurs
Sulcobruchus cadei auct.	Mauritanie	Nongonierma (1978)
Bruchidius silaceus (F.)	Burkina Faso	NONGONIERMA (1978)
Bruchidius uberatus (F.)	Sénégal	Nongonierma (1978)
Caryedon mauritanicus auct.	de la Mauritanie à l'Arabie Saoudite	DECELLE (1979)

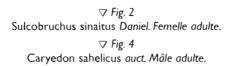

Identification

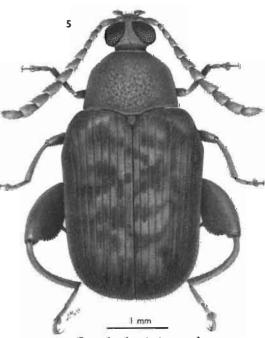
L'identification des Coléoptères Bruchidae au niveau spécifique est essentiellement basée sur l'examen microscopique des pièces génitales, particulièrement de l'édéage du mâle, qui possède généralement une ornementation caractéristique. La clef d'identification ci-dessous, basée uniquement sur des caractères morphologiques externes, permet de différencier sans connaissances particulières (mais avec l'aide d'une loupe binoculaire) les six espèces rencontrées couramment sur A. raddiana en Afrique de l'Ouest. Les espèces douteuses (tabl. II) ne sont pas incluses dans cette clef. Les indications concernant la coloration tégumentaire sont données à titre indicatif, les couleurs varient en effet d'un individu à l'autre, et sont d'une manière générale nettement plus sombres chez la femelle que chez le mâle.


Clef simplifiée d'identification des bruches adultes prédatrices des graines d'Acacia raddiana

1. Fémurs postérieurs normaux, non élargis, ne présentant pas de dent au bord inférieur. Insectes de petite taille (moins de 3 mm en général) 2 - Fémurs postérieurs fortement élargis, possédant un « peigne » caractéristique de 7 à 12 dents le long du bord postérieur. Insectes généralement plus gros, de coloration générale brune, présentant chez deux des trois espèces des taches noires plus ou moins denses 4 2. Insecte de forme trapue, le dernier segment abdominal (pygidium) vertical ou peu incliné. Chez le mâle, le bord postérieur du dernier sternite abdominal est - Insecte allongé, pygidium fortement incliné, presque dans le prolongement des élytres. Chez le mâle, le bord postérieur du dernier sternite abdominal est à peu près droit. Couleur claire, parfois presque blanche, aux soies écailleuses tombant 3. Insecte de couleur sombre, avec des taches noires sur un fond blanchâtre mêlé de roux et une grosse tache noire à cheval sur les deux élytres (fig. 3) Bruchidius aurivillii Blanc - Insecte de couleur claire. Chez la femelle, le pygidium porte latéralement deux petites zones allongées luisantes, dépourvues de pilosité Bruchidius sahelicus auct.


Insectes consommateurs des graines d'Acacia raddiana en Afrique de l'Ouest : les bruches


Sulcobruchus sinaitus ♀



Bruchidius aurivillii

Caryedon sahelicus ♂

Caryedon longispinosus ♂

∇ Fig. 3

Illustrations M. Tran.

4. Grosse bruche (environ 5 mm de long) de con	uleur sombre, aux élytres brunes
densément tachées de noir. Chez le mâle, on c	observe ventralement, à l'arrière
des deux premiers segments abdominaux, deu	x zones portant des touffes de
soies	Caryedon acaciae (Gyllenhal)
- Bruche plus petite (environ 4 mm), de couleur	plus claire5
5. Tégument dépourvu de taches, ou ne présent	ant que quelques taches éparses
(fig. 4). Peigne fémoral identique chez les deux se	xes Caryedon sahelicus auct.
- Tégument toujours taché de noir (fig. 5). Chez le	e mâle, la première épine fémorale
est beaucoup plus longue que chez la femelle e	t est dirigée vers l'avant, en sens
inverse des dents suivantes	Carvedon langistinasus quet

Taux d'infestation par les bruches

Les taux d'infestation relevés par Nongonierma (1978) et nous-mêmes en 1996-1997 dans 34 lots de 200 à plus de 7 000 graines varient très largement selon les échantillons. On relève pour l'ensemble des lots un taux moyen de graines attaquées par les bruches de 49 % (47 245 graines infestées sur 95 910). Les taux varient selon les lots, de 2 % (1 lot) à 100 % (7 lots). Tybirk (1991) mentionne un taux moyen de 70 % pour l'ensemble des données disponibles dans la littérature dans l'aire de dispersion d'A. raddiana.

Cette valeur est à prendre avec précaution. En effet, le phénomène de variabilité des taux d'infestation en fonction de la méthode de détermination de l'attaque (TYBIRK, 1991) est bien connu. Comme Nongonierma (1978), nous avons considéré une graine comme « bruchée » lorsqu'elle présentait un orifice arrondi, visible à l'œil nu. Cet orifice peut être dû soit à la sortie d'un adulte de bruche, soit à celle d'une larve (cas des *Caryedon*), soit à celle d'un parasitoïde adulte. L'estimation ainsi obtenue du taux de « bruchage » est une estimation par défaut du taux réel d'infestation par les bruches, puisque les graines percées par une larve du premier stade morte par la suite à l'intérieur de la graine ne sont pas comptabilisées (mais alors la graine peut rester viable).

En outre, certaines espèces de bruches sont capables de pondre et de se développer à l'intérieur des échantillons de graines, en l'absence de nourriture et d'eau, ce qui peut conduire à une surévaluation grossière des taux d'infestation. Des études en cours (Delobel et Danthu, non publié) montrent que si S. cadei et S. sinaitus ne pondent que sur gousses vertes ou en cours de maturation, B. aurivillii, B. sahelicus et B. uberatus, de même que les trois espèces de Caryedon, se développent parfaitement sur graines mûres. GILLON et al. (1992) notent d'ailleurs que les taux d'infestation élevés généralement signalés sur graines d'Acacia résultent de la succession des générations de bruches ; ils estiment que les taux de destruction supérieurs à 50 ou 60 % sont dus à la reproduction des bruches à l'intérieur des

stocks de graines. Afin d'éviter la réinfestation des échantillons par les adultes de première génération, il est nécessaire, comme ce fut le cas pour nos propres échantillons et ceux de Nongonierma (1978), de prélever très régulièrement les adultes, si possible quotidiennement.

Importance relative des différentes espèces de bruches

Nous avons calculé pour l'ensemble des échantillons collectés par NONGONIERMA (1978) et nous-mêmes entre 1995 et 1997 (tabl. III) le rapport du nombre d'adultes d'une espèce de bruche au nombre total d'adultes de différentes espèces émergés. Nous ne rendons pas compte ici des parasitoïdes, car l'identification précise de l'hôte d'un parasitoïde nécessite un examen minutieux de chaque graine.

Pour l'ensemble de la zone Sénégal, Mauritanie, Mali, Burkina Faso, *C. longispinosus* est de loin l'espèce dominante (tabl. III), obtenue de 23 des 40 échantillons, et représentant près de 60 % des insectes émergés. *B. sahelicus* représente environ 25 % des sorties, et l'ensemble des autres espèces, moins de 15 % du total.

 ∇ Tableau III – Abondance relative des différentes espèces de bruches dans des échantillons de graines d'Acacia raddiana provenant de différentes régions d'Afrique de l'Ouest.

	Échantillons ayant produit cette espèce	Individus émergés	Soit en pourcentage du total
S. sinaitus	11	176	1,2
B. sahelicus	21	3 594	24,8
B. aurivillii	23	1 372	9,5
C. acaciae	3	5	0,03
C. longispinosus	23	8756	60,4
C. sahelicus	9	595	4,1
Ensemble	90	14 498	100

De même que les taux d'infestation, la structure spécifique des populations infestantes dépend de la date de récolte des graines (tabl. IV). En première partie de saison sèche (novembre à mars), les *Bruchidius* sont les espèces dominantes, *B. sahelicus* et *B. aurivillii* représentant ensemble environ 95 % des spécimens présents. Les deux *Caryedon* sont rarement obtenus au cours de ces cinq mois. La situation change complètement à partir du début avril : *C. longispinosus* devient l'espèce largement dominante, représentant 71 % des insectes issus des graines

au cours des mois d'avril et mai. S. sinaitus, espèce dont la partie essentielle du développement se déroule dans les gousses vertes, se raréfie à mesure que le nombre de nouvelles gousses décroît.

▼ Tableau IV – Variabilité temporelle de la structure spécifique des populations de bruc	hes
infestant les graines d'A. raddiana en Afrique de l'Ouest.	

	Novembre	e - Mars	Avril - Mai		
	Individus émergés	Pourcentage	Individus émergés	Pourcentage	
S. sinaitus	56	2,9	14	0,1	
B. sahelicus	838	43,0	2 753	22,5	
B. aurivillii	1 004	51,6	202	1,7	
C. acaciae	2	0,1	0		
C. longispinosus	37	1,9	8 690	71,2	
C. sahelicus	10	0,5	552	4,5	

Dynamique des infestations

Évolution au cours de la saison

La date de récolte a un effet déterminant sur les taux globaux d'infestation : parmi l'ensemble des graines récoltées par Nongonierma (1978) et nous-mêmes entre novembre et mars, 9 % (3 817 sur 40 357) sont « bruchées », contre 78 % pour les graines récoltées en avril-mai (43 428 sur 55 553). Notre échantillon sénégalais, récolté en décembre 1996 (fig. 1 a et 1 b) est caractéristique des récoltes précoces : taux d'infestation relativement faible (21 %), avec prédominance de l'espèce B. aurivillii et abondance remarquable de S. sinaitus (14 % des individus émergés).

Deux phénomènes peuvent expliquer l'accroissement constaté à partir d'avril :

- l'évolution naturelle des populations de bruches conduit à un accroissement en un lieu donné du nombre des femelles infestantes ;
- les prélèvements tardifs concernent des graines dont certaines ont séjourné plus longtemps sur l'arbre et ont donc été soumises à une intensité de ponte plus élevée.

Il semble en revanche que l'hypothèse de « satiété » avancée par JANZEN (1971) chez certaines bruches (les fruits tardifs échappent à l'infestation car les femelles ont épuisé leur stock d'ovocytes) ne se vérifie pas dans le cas des bruches d'Acacia raddiana. Plusieurs générations se succèdent en effet sur les graines au cours de l'année, et les taux d'infestation s'accroissent entre décembre et mai. Après une période où le nombre de fruits disponibles s'accroît rapidement

tandis que le nombre de femelles gravides reste faible, le nombre de fruits se stabilise puis décroît, tandis que le nombre de femelles s'élève rapidement. Il en résulte un accroissement des taux d'infestation à mesure que la saison s'avance.

Survie des bruches pendant la saison humide

Plusieurs mécanismes permettent aux populations de bruches de subsister pendant la saison humide, tandis que les graines disponibles se raréfient et disparaissent probablement dans certaines zones géographiques.

La longévité des adultes et leurs capacités de quiescence sont inconnues. Nous avons observé en laboratoire des longévités dépassant deux mois en l'absence d'eau et de nourriture chez certaines espèces, en particulier chez Sulcobruchus cadenati (Pic), principale bruche des graines d'A. senegal. Chez cette espèce, l'imago, après avoir découpé dans la cuticule de la graine l'opercule permettant son émergence, peut rester quiescent à l'intérieur de la graine pendant plusieurs mois. De même, ERNST et al. (1989) ont pu maintenir des individus de B. aurivillii pendant 16 mois au laboratoire à l'intérieur des graines d'A. tortilis heteracantha.

Il existe par ailleurs chez Caryedon sahelicus un phénomène qui s'apparente à une diapause larvaire, déclenchée sous certaines conditions de température, d'hygrométrie ou de longueur du jour et qui touche une certaine proportion des individus après le tissage du cocon. Les conditions de levée de cette quiescence ne sont pas connues.

Les trois espèces de *Caryedon : C. acaciae, C. longispinosus* et *C. sahelicus* pondent sur graines tombées au sol. Il s'agit d'un autre des mécanismes possibles permettant la survie de leurs populations pendant l'intersaison.

Parmi les neuf espèces de bruches rencontrées, seule S. sinaitus semble strictement monophage, puisqu'elle n'a été observée que dans les graines d'A. raddiana. Les autres espèces de bruches possèdent des hôtes alternatifs susceptibles de faciliter leur survie lorsque les gousses d'A. raddiana ne sont plus disponibles dans une zone géographique donnée (tabl. V).

√ Tableau V – Hôtes des bruches de l'Acacia raddiana en Afrique de l'Ouest.

Bruches	Hôtes principaux	Autres hôtes selon Nongonierma (1978) et observations personnelles
S. sinaitus	A. raddiana	
C. sahelicus	A. raddiana, A. ehrenbergiana	A. senegal, A. seyal, A. kirkii
B. aurivillii	A. raddiana	F. albida, A. macrostachya
C. acaciae	A. nilotica	A. seyal, A. raddiana
C. longispinosus	A. raddiana	A. senegal
B. sahelicus	A. raddiana, A ehrenbergiana	A. senegal, A. sieberana, A. seyal, A. hockii, A. dudgeon

Il faut enfin évoquer la possibilité de déplacements de femelles sur de longues distances, à la recherche de gousses mûrissant à contre-saison, même si les capacités de vol des différentes espèces de bruches signalées ici sont inconnues.

Ennemis naturels

Parasitoïdes

Ils appartiennent essentiellement à des familles d'Hyménoptères Chalcidoidea, principalement les Eulophidae, les Eurytomidae et les Pteromalidae (fig. 1 c). Ils se développent dans les larves des différentes bruches. Leur biologie est mal connue, de même que leur importance dans la dynamique des populations des bruches hôtes. Un petit nombre d'entre eux (tabl.VI) ont été identifiés en Afrique australe et en Israël.

√ Tableau VI – Hyménoptères parasites des bruches d'A. raddiana.

Parasitoïde	Hôte	Localité	Auteur
Anisopteromalus calandrae How.	B. albosparsus et/ou C. palaestinicus	Israël	DONAHAYE et al., 1966
Bracon brevicornis	B. albosparsus et/ou C. palaestinicus	Israël	Donahaye et al., 1966
Bruchocida vuilleti Crawford	B. albosparsus et/ou C. palaestinicus	Israël	Donahaye et al., 1966
Eupelmus sp.	non identifié	Botswana	ERNST et al., 1989
Metriocharis sp. pr. silvestri	Bruchidius sp.?	Botswana	ERNST et al., 1989
Oedaule stringifrons Waterston*	B. albosparsus et/ou C. palaestinicus	Israël	DONAHAYE et al., 1966

^{*} Oedaule est séminivore selon ERNST et al. (1989).

Nous avons également obtenu deux Hyménoptères Braconidae : *Bracon* sp. de *B. aurivillii* et *Phanerotoma* sp. de *C. longispinosus*. À noter que *Bracon kirkpatricki* Wilkinson est signalé par PREVETT (1966) comme parasite de *Caryedon serratus* (Olivier) sur *Piliostigma* spp. et *Tamarindus indica* (Caesalpinioideae).

Un Diptère Bombylidae (*Exoprosopa minops* Meigen) a été obtenu des cocons de *C. palaestinicus* infestant les graines d'A. raddiana en Israël (DONAHAYE et al., 1966). Il convient à ce propos de noter que le mode d'échantillonnage généralement pratiqué, qui consiste à collecter des gousses sur l'arbre ou au sol, ne permet normalement pas de mettre en évidence le parasitisme dont sont victimes les larves des *Caryedon* à leur sortie de la graine puis les nymphes à l'intérieur des cocons.

Acariens parasites

Les gousses, particulièrement celles tombées au sol, hébergent fréquemment un acarien parasite des larves, des nymphes et des adultes de très nombreux insectes. Il s'agit d'un Pyemotes (Acariformes, Protostigmata, Pyemotidae). Différents noms ont été donnés à cet acarien : P. ventricosus Newport, P. tritici (Lagrèze-Fossat et Montagné), P. boylei Krczal, mais Moser (1975) a montré qu'il s'agit d'une même espèce apparemment ubiquiste, dont l'identité correcte est P. tritici. Cet acarien provoque généralement, dans les stocks de graines, une mortalité importante chez toutes les espèces de bruches. La larve de cet acarien est en effet capable de pénétrer dans la graine à la recherche d'une proie, soit par l'orifice d'entrée de la larve de premier stade, soit par une ouverture du tégument séminal provoquée par la larve du dernier stade. Les larves de Caryedon spp. sont particulièrement vulnérables entre le moment où elles quittent la graine et celui où le tissage du cocon est achevé. Les bruches adultes sont également attaquées par les acariens, particulièrement au moment où elles quittent la graine ou le cocon. Une humidité atmosphérique élevée (supérieure à 50 % environ) semble favoriser le développement de ce parasite.

Les *Pyemot*es constituent probablement une des principales sources de sousévaluation des taux de « bruchage ». Ils sont par ailleurs responsables chez l'homme de dermatoses prurigineuses particulièrement désagréables (MOSER, 1975), qui empêchent pratiquement toute possibilité d'utilisation de ces acariens comme agents de lutte biologique.

Conclusion

Les différentes espèces des genres Bruchidius, Sulcobruchus et Caryedon se nourrissant des graines d'A. raddiana constituent une guilde dont l'impact sur la production de graines viables semble majeur, en Afrique de l'Ouest comme dans l'ensemble de l'aire de distribution de l'espèce. Pourtant, l'évaluation précise de cet impact se heurte à un certain nombre de difficultés méthodologiques, liées au premier chef à une forte variabilité dans le temps et dans l'espace. ERNST et al. (1989) au Botswana notent que, d'une année à l'autre, le même arbre voit ses graines attaquées à 82 %, puis à 28 % seulement. La même année, deux arbres voisins connaissent des taux de prédation de 70 % et 27 %. Il est intéressant en outre de constater qu'au cours de la période de fructification, qui s'étend dans la zone considérée de novembre à mai, se produit une succession d'espèces séminivores. Celles apparues les premières (S. sinaitus, B. aurivillii) infestent des graines en début de maturation. Elles laissent la place à des espèces déposant leurs œufs sur des graines mûres, après comme avant dispersion. L'espèce la plus représentative de ce second groupe est C. longispinosus.

Même si l'état actuel de la systématique des bruches paléotropicales ne permet pas de réaliser une comptabilité précise des espèces en présence, on peut considérer qu'aux 6 à 10 espèces de bruches inféodées à A. raddiana pour la seule Afrique de l'Ouest, il faut ajouter au moins 4 espèces du Moyen-Orient (Delobel, non publié) et 6 à 8 espèces en Afrique australe (VAN TONDER, 1985; ERNST et al., 1989). L'espèce héberge ainsi sur l'ensemble de son aire de répartition une guilde de Coléoptères séminivores diversifée, plus riche que celle observée sur la plupart des autres espèces d'Acacia en Afrique (VAN TONDER, 1985; GILLON et al., 1992), mais sans doute équivalente à celle d'espèces comme Acacia seyal (DELOBEL et al., 1995), A. karroo (VAN TONDER, 1985) ou A. sieberiana (VAN TONDER, 1985; DELOBEL et al, 1995; MUCUNGUZI, 1995). Cette diversité soulève d'intéressantes questions en matière de spécialisation trophique et écologique des Bruchidae, de mécanismes de défense des acacias, d'évolution parallèle de ces insectes et de leurs plantes hôtes.

Auteurs

A. Delobel, M.Tran Antenne IRD/MNHN (Entomologie), 45, rue Buffon, 75005 Paris.

P. Danthu Cirad-Forêt, BP 853, Antananarivo 101, Madagascar

Références bibliographiques

BOROWIEC L.,

1987 – The genera of seed-beetles, Coleoptera, Bruchidae. Polsk. Pismo Entomol., 57: 3-207.

DECELLE I..

1977 – Les Coléoptères Bruchides d'Angola. Mus. Dundo, 89: 15-32.

DECELLE J.,

1979 - Coleoptera, Fam. Bruchidae. Insects of Saudi Arabia, 1:318-330.

DELOBEL A., DELOBEL H., TRAN M., SEMBÈNE M., HAN S. H.,

1995 – Observations sur les relations trophiques entre les bruches du genre Caryedon (Coléoptères Bruchidae) et leurs plantes hôtes sauvages au Sénégal. Bull. Inst. Fond. Afr. noire (A), 48:79-88.

DONAHAYE E., NAVARRO S., CALDERON M.,

1966 – Observations on the life cycle of Caryedon gonagra (F.) on its natural hosts in Israel, Acacia spirocarpa and A. tortilis. Trop. Sci., 8:85-89.

ERNST W. H. O., TOLSMA D. J., DECELLE J. E.,

1989 – Predation of seeds of Acacia tortilis by insects. Oikos, 54: 294-300.

GILLON Y., RASPLUS J.-Y., BOUGHDAD A., MAINGUET A.-M.,

1992 – Utilisation des graines de Légumineuses par un peuplement de Bruchidae et d'Anthribidae (Coleoptera) en zone de mosaïque forêt-savane, Lamto, Côte-d'Ivoire. J. Zool. Afr., 106: 421-443.

JANZEN D. H.,

1971 – Seed predation by animals. Ann. Rev. Ecol. Syst., 2: 465-492.

MOSER J. C.,

1975 – Biosystematics of the straw itch mite with special reference to nomenclature and dermatology. *Trans. Roy. Entomol. Soc. London*, 127:185-191.

MUCUNGUZI P.,

1995 – Bruchids and survival of *Acacia* seeds. *Afr. J. Ecol.*, 33:175-183.

Nongonierma A.,

1978 – Contribution à l'étude biosystématique du genre Acacia Miller en Afrique occidentale. Thèse, univ. Dakar, Sénégal., t. I, 451 p., t. II, 314 p., t. III, 406 p.

PREVETT P.F.,

1966 – Observations on biology in the genus Caryedon Schönherr (Coleoptera, Bruchidae) in Northern Nigeria, with a list of associated parasitic Hymenoptera. Proc. Roy. Entomol. Soc. London (A), 41:9-16.

SOUTHGATE B. J.,

1983 – Handbook on seed insects of Acacia species. FAO, Rome.

TYBIRK K.,

1991 – Régénération des Légumineuses ligneuses du Sahel. AAU Reports, 28 : 1-86.

Van Tonder S. J.,

1985 – Annotated records of Southern African Bruchidae (Coleoptera) associated with acacias, with a description of a new species. *Phytophylactica*, 17:143-148.

Élevage en pépinière, mise en place et entretien des plantations d'*Acacia raddiana* en Afrique de l'Ouest

1. ROUSSEL

Les propositions dont il est question ici relèvent d'une expérience acquise en Afrique de l'Ouest. Il n'en est pas moins vrai qu'à quelques nécessaires adaptations près, ces données sont vraisemblablement aisément transférables à d'autres contextes et situations écologiques. Cet exposé concernera successivement les étapes de l'élevage en pépinière, la mise en place des jeunes plants et leur entretien.

Élevage en pépinière

Semences

Acacia raddiana est un taxon très fructifère, il y a donc un intérêt majeur à n'utiliser que des graines de premier choix issues de semenciers sélectionnés dans les meilleures provenances des milieux écologiques à reboiser. Ces graines, après la récolte, doivent être préservées des insectes prédateurs et conservées dans de bonnes conditions (stockage dans un endroit frais et sec ou en chambre froide). On compte approximativement 16 400 graines par kg de semences.

Conditions de germination

La qualité de germination dépend avant tout de la maturité de la graine et de son état sanitaire. Rappelons que la température a un rôle primordial sur les taux et

la vitesse de germination. En zones tropicales sèches, les températures (diurnes et nocturnes) subissent des écarts importants dont il faut tenir compte en période de semis. L'optimum se situe généralement aux environs de 30 °C (Danthu et al., cet ouvrage) ¹.

Deux prétraitements sont possibles pour lever l'inhibition tégumentaire des graines. Ils offrent l'un et l'autre d'excellents résultats pour autant que les manipulations soient effectuées méthodiquement :

- le premier consiste à tremper les graines dans de l'eau bouillante et à les laisser refroidir pendant 36 à 48 heures. Il faut veiller à ne pas dépasser ces délais, il y aurait alors pourriture des graines. Ce procédé présente comme avantages de pouvoir être pratiqué par les pépiniéristes sans aucun danger et d'être d'un coût réduit ;
- le second procédé nécessite la présence d'un manipulateur expérimenté utilisant les produits chimiques, en particulier les acides. Dans ce cas, les semences sont traitées à l'acide sulfurique concentré (H_2SO_4 à 94-96 %) par immersion pendant 60 mn. Elles sont rincées ensuite à l'eau froide pendant 10 à 15 mn. Ce traitement plus onéreux a également l'avantage d'être plus rapide et efficace, et de permettre la préparation de grandes quantités de semences.

Le semis des graines doit suivre immédiatement les prétraitements.

Fertilisation

Une fertilisation classique à base de phosphate bicalcique, phosphate tricalcique, superphosphate triple ou engrais complet pourra être incorporée lors de la préparation du substrat en vue de fournir une nutrition minérale équilibrée aux jeunes semis.

Les doses suivantes peuvent être employées pour 1 m³ de sol préparé pour les semis en pépinière :

phosphate bicalcique: 1,2 kg
phosphate tricalcique: 1 kg
superphosphate triple: 1 kg
NPK (10.10.20)*: 2 kg

* attention à leur composition : un 10.10.20 peut avoir des composants différents selon la marque et le lot de fabrication (chlorure de potasse ou sulfate de potasse, sulfate d'ammoniaque ou nitrate par exemple).

Semis

Les semis s'effectuent, en pépinière, sur un sol argilo-sableux, si possible préalablement stérilisé ou désinfecté, aux doses recommandées par les fabricants, avec l'un des produits suivants : dazomet, formol, bromure de méthyle, métam-sodium, ou vapam. Ces interventions ne sont cependant pas impératives pour qu'un semis soit un succès.

^{1. «} La graine et la germination d'Acacia raddiana ». In Grouzis M., Le Floc'h E., éd. : Un arbre au désert, Acacia raddiana. Paris, IRD Éditions, 2003 : 265-284.

Les graines d'Acacia raddiana sont semées en sachet de polyéthylène, à raison de l à 2 graines peu enfoncées par sachet.

Le semis en germoir est à proscrire, car cette espèce ne supporte pas le repiquage. Le semis direct s'impose donc.

Protection

En période de fortes chaleurs, une protection contre le soleil s'impose par la mise en place d'ombrières pendant la période de germination limitée à 8 jours environ, puis par une réduction de l'ombrage, soir et matin, et passage en pleine lumière 12 à 15 jours après semis.

Dans les régions à fortes propensions venteuses, il est indispensable, afin d'éviter le dessèchement ainsi que les brûlures sur les jeunes plants, d'assurer une protection contre le vent à l'aide de claies verticales en paille, bambous tressés, plantation de brise-vent ou autres moyens artificiels tels que filets, films plastique...

Arrosage

En pépinière, l'arrosage se pratique deux fois par jour en début et fin de journée lorsque le soleil est le moins intense. Il est déconseillé de le faire en cours de journée et par plein soleil sauf cas exceptionnel de déficit hydrique ou de très forte chaleur. Cette intervention doit alors se faire sous ombrière.

L'apport d'eau s'effectue à la rampe d'arrosage pendant la germination et la période d'installation de la plantule (15 jours à 3 semaines) et à la pomme d'arrosage ensuite dès que les plants peuvent supporter des apports plus élevés d'eau. Les doses journalières nécessaires sont de l'ordre de 40 à 60 litres d'eau pour I 000 plants.

Démariage

En sachets, le démariage (élimination de certains plants dans les sachets où ils sont trop nombreux) des semis s'effectue uniquement par prélèvement de jeunes plants, avec la motte de terre adhérente au système racinaire, entre le cinquième et le douzième jour après semis. Cette méthode permet, au travers du réemploi de jeunes plants issus du démariage, de réaliser des regarnis éventuels mais ne peut en aucun cas être considérée comme moyen de production de plants.

Sur planche, Acacia raddiana ne se repique pas, sinon avec difficultés, et en aucun cas à racines nues.

Traitements phytosanitaires

Cette espèce rustique est généralement résistante aux maladies ou attaques parasitaires. Les semis ainsi que les jeunes plants peuvent néanmoins subir des attaques par les parasites suivants : cochenilles, vers gris, larves tordeuses, pucerons ou punaises.

De nombreux produits sont proposés par les industries chimiques. Sans que la liste en soit exhaustive, ceux présentés au tableau I sont à conseiller.

 ∇ Tableau I – Produits phytosanitaires et doses d'utilisation.

Parasites visés	Matière active	Formulation	Dosage	Nom commercial
Cochenilles	Parathion - éthyl	EC	3 g de m.a/10 l eau en pulvérisation foliaire.	Paraphène bouillie
	Chlorpyriphos-éthyl	EC	Curatif: 50 g m.a/100 l eau en pulvérisation foliaire. Traitement à répéter tous les 15 jours.	Procibam 480
	Deltaméthrine + diméthoate	EC	Mélanger 0,50 g/m.a de deltaméthrine et 20 g de m.a de diméthoate dans 10 l eau. En pulvérisation foliaire.	K-othrine + Systoate
Vers gris	Deltaméthrine	EC	0,1 g de m.a/100 m ²	K-othrine
	Lindane	WP	4 g de m.a/kg de son (riz-arachides)	Lindafor 90
Larves tordeuses	Deltaméthrine + diméthoate	EC	mélanger 0,50 g/m.a de deltaméthrine et 20 g de m.a de diméthoate dans 101 eau. En pulvérisation foliaire.	K-otrine + Systoate
Pucerons Punaises	Deltaméthrine + diméthoate	EC	mélanger 0,50 g/m.a de deltaméthrine et 20 g de m.a de diméthoate dans 101 eau. En pulvérisation foliaire.	K-otrine + Systoate
	Parathion-éthyl	EC	3 g de m.a/10 l eau en pulvérisation foliaire.	Paraphène bouillie
	Endosulfan	EC	6,2 g de m.a./10 l eau en pulvérisation foliaire.	Thimul 35 CE

EC : concentré émulsionnable ; WP : poudre mouillable.

Désherbage-binage

Ces interventions conjointes doivent être réalisées trois semaines environ après le semis, puis toutes les trois semaines jusqu'à la sortie des plants de pépinière.

Déplacement des sachets-cernage

Le système racinaire des plants évolue très rapidement. Il importe de le contrôler et de procéder au cernage des racines dès que celles-ci apparaissent au fond du sachet, de déplacer ensuite ces derniers afin d'obtenir une meilleure homogénéité et éviter l'effet de bordure. Ce travail s'effectue généralement à partir de la troisième semaine et devra être répété périodiquement jusqu'à la sortie des plants de pépinière.

Durée de l'élevage en pépinière

Lorsque les conditions d'élevage sont favorables, le séjour des jeunes plants en pépinière est de l'ordre de quatre mois. Ce délai permet d'obtenir des plants de taille moyenne (30 et 40 cm) pouvant résister au stress de la transplantation au champ.

Plantation

Travaux préparatoires

DÉFRICHEMENT

La végétation préexistante constitue un obstacle à la mise en place des plants. Il est donc nécessaire de procéder à son élimination. Deux types d'intervention sont possibles en fonction du but à atteindre :

- défrichement total par des travaux mécaniques : abattage des arbres, dessouchage, destruction des termitières, brûlis ou dégagement de la végétation, andainage ;
- défrichement partiel en zone de culture ou en aménagement de forêts naturelles : on procède au dégagement de la végétation gênante tout en conservant les arbres de valeur ou utiles. Ces travaux sont réalisés manuellement.

Travail du sol

Cette intervention est nécessaire et varie en fonction des types de sol rencontrés. La préparation du terrain doit être entreprise plusieurs mois avant la plantation. Il s'agit éventuellement de travaux mécaniques du sol par sous-solage simple ou croisé à 60 cm de profondeur, suivi d'un ameublissement. Ces travaux facilitent grandement la mise en place des plants, assurent une meilleure reprise en favorisant la pénétration des eaux de pluie en profondeur, et permettent de lutter contre les adventices par des entretiens appropriés.

Les travaux effectués manuellement s'appliquent surtout aux petites surfaces, aux terrains difficiles d'accès. Ils consistent à creuser des trous ou potets de plantation. Les dimensions préconisées sont les suivantes :

- $-60 \text{ cm} \times 60 \text{ cm} \times 60 \text{ cm}$ pour les grands potets ;
- 40 cm x 40 cm x 40 cm pour les moyens potets.

Ces trous doivent être creusés à l'avance et rebouchés avant la mise en place des plants.

Mise en place des plants

L'écartement à adopter est tributaire de la fonction dominante du reboisement. La plantation sera réalisée selon l'objectif retenu. La densité varie généralement entre 100 plants.ha⁻¹ ($10 \text{ m} \times 10 \text{ m}$) et 494 plants.ha⁻¹ (4,50 m \times 4,50 m). Une plantation à 4,50 m \times 2 m peut être réalisée lorsqu'il s'agit d'essais spécifiques par semis direct.

Les étapes suivantes sont alors nécessaires à considérer :

- procéder à l'ouverture d'un trou en utilisant pour gabarit la pelle-bêche de 25 cm de largeur ;
- épandre sur les parois ainsi qu'au fond de chaque trou un insecticide anti-termites, soit du chlorpyriphos (nom commercial : DURSBAN à raison de 20 g.plant⁻¹, ou encore du carbosulfan en granulés (nom commercial : SUSCON) à raison de 10 g.plant⁻¹. Le produit doit être incorporé au sol avant le rebouchage du trou ;
- sectionner ensuite le sachet à 1 cm du fond, afin d'éliminer les crosses ou chignons éventuels du système racinaire ;
- pratiquer une ouverture latérale pour couper les enroulements des racines et faciliter le retrait du sachet ;
- déposer le sachet au fond du trou sans détruire la motte ;
- reboucher après avoir retiré le sachet, et garantir la cohésion de la motte en maintenant le collet au niveau du sol.

Entretien

Les entretiens doivent être entrepris très rapidement après la mise en place des plants, afin de lutter contre les adventices grandes consommatrices d'eau. On distingue :

- les entretiens mécaniques réalisés par passage entre les lignes de plants d'un pulvériseur à disques. Deux à trois entretiens sont nécessaires la première année de plantation, le dernier se faisant en fin de saison des pluies;
- les entretiens manuels, qui sont complémentaires et suivent les entretiens mécaniques. Ils consistent le plus souvent en un sarclage. L'entretien se fait sur I m de large sur chaque ligne de plantation, ou en rond autour de chaque plant lorsqu'il n'est pas nécessaire d'intervenir sur l'ensemble de la parcelle. La fréquence est la même que pour les entretiens mécaniques, c'est-à-dire 2 à 3 par an.

Les entretiens de deuxième et troisième année se font de la même façon à des périodes qui varient en fonction du développement et de l'importance des adventices.

Auteur

J. Roussel Le Chatellier 35133 Fougères, France

Bilan et perspectives

Le constat de la dégradation quasi irréversible des écosystèmes au nord et au sud du Sahara est bien établi. Les causes relèvent, d'une part, de changements climatiques défavorables et, d'autre part, de l'anthropisation croissante. La régénération des terres dégradées s'avère nécessaire pour le maintien des activités humaines en milieu rural, car la végétation spontanée de ces régions constitue la base de l'alimentation des troupeaux, la principale source d'énergie et le fonds de reconstitution des systèmes agroforestiers.

De grands programmes de reboisement ont été mis en œuvre pour lutter contre la dégradation des terres. Ceux-ci ont bien souvent abouti à des échecs, en raison de l'inadaptation à l'aridité et au faible niveau de fertilité des zones d'introduction des espèces exotiques à croissance rapide utilisées. De plus, ces systèmes « construits », non stables et non reproductibles, posent des problèmes de gestion. Face à de tels échecs, les programmes de recherche sur la réhabilitation des terres en zone aride se sont orientés vers la mise en place de systèmes complexes (pluristrates) visant une meilleure stabilité et une plus grande résilience, pour réduire les risques affectant la production des espaces pastoraux et agroforestiers.

Le recours à des espèces autochtones généralement plus adaptées au milieu et largement connues et utilisées par les populations locales devient à cet égard une nécessité. Parmi celles-ci, les légumineuses arborescentes et herbacées pérennes offrent un intérêt particulier, car leur double capacité à réduire le dioxyde de carbone et l'azote atmosphérique en fait des modèles de choix dans les programmes de restauration d'écosystèmes et de développement durable. Cependant, la mise en œuvre de telles options se heurte, d'une part,

à la méconnaissance relative de ces espèces et, d'autre part, à la nécessité d'identifier, de caractériser et de modéliser les interactions complexes et dynamiques au sein des écosystèmes recherchés. Cela implique également la pluridisciplinarité de la recherche.

Le modèle retenu dans cet ouvrage est Acacia tortilis subsp. raddiana, une des 155 espèces spontanées du genre Acacia en Afrique, en raison notamment de sa large répartition, de ses capacités de résistance à la sécheresse et de fixation de l'azote, et de ses multiples usages traditionnels.

Différentes spécialités relevant de l'écologie, l'écophysiologie, la génétique, la microbiologie, l'entomologie et la foresterie se sont associées pour préciser la taxonomie et la répartition géographique de cette sous-espèce, pour analyser la diversité aussi bien de la plante hôte que des micro-organismes qui lui sont associés, pour caractériser son fonctionnement et les interactions en milieu naturel en réponse aux facteurs eau et azote, et réunir les éléments nécessaires à son utilisation dans les opérations de réhabilitation.

Avant de suggérer quelques orientations de recherche découlant des travaux présentés ici, nous rappellerons les principaux résultats obtenus.

Acacia raddiana

Cette sous-espèce s'étend entre les latitudes 5° et 32° nord ; elle possède une aire péri-saharienne et moyen-orientale. Elle est caractérisée par une grande plasticité écologique puisqu'elle colonise les régions recevant entre 50 et I 000 mm de précipitations annuelles et situées du niveau de la mer jusqu'à une altitude de 2 I 00 m. Les populations de ce taxon présentent une grande variabilité génétique, expliquée en partie par la polyploïdie rencontrée. Cette plante peut être classée parmi les espèces à haut potentiel fixateur d'azote mais à faible rendement.

Elle est largement utilisée par les populations locales comme plante médicinale, fourrage, bois d'énergie, charbon en raison du pouvoir calorifique élevé de son bois. Ce dernier est aussi apprécié dans l'artisanat pour la confection d'outils et d'ustensiles divers. C'est une plante qui sert à tanner les peaux et sa gomme est consommée. Elle est aussi utilisée pour la stabilisation et la fertilité des sols. Cette plante joue donc un rôle important dans l'économie rurale.

Caractères adaptatifs à l'aridité

Les résultats soulignent la remarquable capacité d'adaptation d'Acacia raddiana qui survit, croît et se développe dans ses zones de prédilection malgré de fortes demandes évaporatives et des précipitations limitées. Cette adaptation est à mettre en relation avec une consommation en eau particulièrement faible et une certaine optimisation du rapport assimilation de $\rm CO_2$ /transpiration. La consommation annuelle d'Acacia raddiana, évaluée dans le nord du Sénégal, est seulement de 66 mm, ce qui représente 44 % des précipitations annuelles et 3 % de l'ETP_{Penman}, quand on rapporte le flux à la surface du xylème conducteur à l'hectare

On doit relever que la phénologie explique 90 % de la variation décadaire du flux transpiratoire normalisé par l'ETP, phénologie qui, malgré une grande variabilité intersite et intra-population, semble être, pour le nord du Sénégal tout au moins, en étroite relation avec les réserves hydriques du sol, si l'on excepte l'installation du feuillage qui résulterait d'un ajustement osmotique.

Les micro-organismes associés et le métabolisme azoté

Les études relatives à la diversité taxonomique et aux propriétés symbiotiques des rhizobia nodulant *Acacia raddiana* ont révélé la grande diversité taxonomique des isolats, qui contraste avec la grande homogénéité des caractères symbiotiques majeurs et de structure des « facteurs nod », qui constituent de bons indicateurs du potentiel de nodulation d'un rhizobium donné.

Dans la symbiose légumineuse-bactérie, le facteur susceptible d'entraver la nodulation et la fixation d'azote n'est généralement pas l'absence de souches bactériennes efficientes, mais un ou plusieurs facteurs écologiques qui en limitent l'efficacité. Cela a conduit à préciser la résistance aux stress thermique, salin et hydrique des souches de bactéries nodulantes isolées des sols de Tunisie et du Sénégal. Les souches se sont avérées hautement résistantes à la température (40 °C, voire 45 °C), à la salinité (1 % de NaCl pour les souches tunisiennes et jusqu'à 2 % pour les souches sénégalaises) et au stress hydrique (- 1,8 MPa). Dans l'ensemble, les souches étaient, à potentiel hydrique équivalent, plus résistantes au stress hydrique que salin.

Le pouvoir fixateur d'azote élevé reconnu à ce taxon est à mettre en relation avec la présence de nodules abondants pendant la saison des pluies, à proximité du tronc (2-3 m) et entre 25 et 75 cm de profondeur *in natura*. Pour le Sahel sénégalais, l'humidité volumique du sol varie de 4 à 11 % durant cette période. L'infection mycorhizienne est quant à elle fortement réduite dans les milieux érodés.

Effet rhizosphérique et interactions ligneux-herbacées

Malgré la faiblesse générale de l'activité biochimique et microbiologique des sols en relation avec les conditions d'aridité et de pauvreté édaphique (faible teneur en matière organique, en nutriments, déficit en eau...), presque tous les paramètres suivis dans les sols ont été modifiés par la présence du système racinaire d'Acacia raddiana, ce qui démontre un effet rhizosphérique. Celui-ci varie en fonction d'un certain nombre de paramètres tels que la distance au tronc, l'âge du peuplement et les conditions trophiques stationnelles. Ces résultats mettent en exergue le rôle primordial de l'arbre dans l'amélioration des conditions nutritionnelles, en constituant des îlots de fertilité dans les milieux aride et semi-aride. L'arbre, et dans notre cas Acacia raddiana, favorise le développement de la strate herbacée, qui se traduit par une augmentation de la richesse floristique, de la production et du stock en bioéléments de la strate herbacée sous couvert ligneux.

Techniques agroforestières

Les connaissances accumulées sur les parasites des semences, leurs propriétés germinatives ainsi que les techniques de production de plants et d'entretien des plantations rendent possible l'utilisation de ce taxon dans les systèmes de plantations à haute et faible technicité.

Comportement nord- et sud-saharien

Les résultats ont montré qu'il n'y a aucune liaison apparente entre la position taxonomique et l'origine géographique des souches de rhizobia qui présentent par ailleurs une grande homogénéité des caractéristiques symbiotiques majeures. Notons cependant que les souches sénégalaises paraissent plus résistantes à la salinité.

Il apparaît aussi que l'infection mycorhizienne est similaire pour les deux provenances (nord et sud) d'Acacia.

L'activité métabolique des micro-organismes des sols tunisiens est en revanche largement supérieure à celle des sols sénégalais.

Pour ce qui concerne le régime hydrique des formations au nord et au sud du Sahara, il a été démontré que si les disponibilités hydriques sont limitées dans le temps, elles sont plus élevées dans les horizons supérieurs dans la station tunisienne, ce qui favorise un enracinement superficiel. Elles sont élevées dans les horizons profonds pour les stations sénégalaises étudiées. Cette stratification particulière des stocks d'eau dans le sol explique en grande partie le calage du cycle phénologique sur la saison des pluies au Sénégal. En Tunisie, *Acacia raddiana* garde un rythme tropical, en réalisant l'essentiel de son cycle en été.

Il est entendu que les travaux présentés dans cet ouvrage ne prétendent nullement à l'exhaustivité. Il reste encore beaucoup à découvrir de ce taxon dont la diversité, la plasticité et les multiples adaptations écologiques sont remarquables. Rappelons brièvement les nombreuses orientations suggérées dans les différentes contributions.

Perspectives

Pour ce qui concerne les micro-organismes, il y a lieu de valider les différents groupes de souches de *Rhizobia* nodulant *Acacia raddiana* par des techniques phylogénétiques afin de préciser leur position taxonomique et de proposer d'éventuelles conclusions nomenclaturales. Il est par ailleurs utile d'améliorer les connaissances sur la diversité et l'écologie des champignons mycorhiziens arbusculaires des sols pour sélectionner les plus performants comme *inoculum*. La diversité des coléoptères séminivores parasitant *Acacia raddiana* suscite des questions sur la spécialisation trophique et écologique des bruchidées, l'identification des mécanismes de défense des acacias et la caractérisation de la co-évolution des insectes et de la plante hôte.

Sur le plan fonctionnel, il s'est avéré nécessaire de préciser les liens entre transpiration et phénologie, car cette relation ouvre une voie à la prévision de

la transpiration. Il a aussi été rappelé la nécessité d'augmenter le rendement du potentiel fixateur d'azote d'Acacia raddiana par la sélection de provenances, de descendances ayant un rendement élevé. L'utilisation de clones pourrait grandement aider cette sélection. Il est vrai que l'étude génétique de cette espèce est rendue difficile par son caractère polyploïde, d'où la nécessité d'enrichir les modèles génétiques adaptés à l'interprétation des marqueurs au niveau tétraploïde. La contribution de la génétique devrait aussi s'orienter vers l'amélioration des connaissances de l'impact des pratiques humaines sur la dynamique de la diversité génétique de cette sous-espèce. La connaissance des conséquences des pratiques passées et présentes sur l'état actuel de la diversité génétique devrait permettre de mieux évaluer son devenir face aux perturbations liées aux changements climatiques et à l'accroissement démographique.

La restauration des peuplements d'Acacia raddiana nécessite encore d'étudier les techniques appropriées, soit pour la réinstallation d'écosystèmes détruits, soit pour la densification de peuplements clairsemés. Les intérêts de telles formations végétales sont multiples, en particulier pour la conservation de la biodiversité sensu lato : végétale, animale et fonctionnelle.

M. GROUZIS et E. LE FLOC'H

Achevé d'imprimer en Octobre 2003 sur les presses de Fournié Imprimeur à Fonsegrives - 31131 Balma Dépôt légal n° 3192 imprimé en France Cet ouvrage réunit les résultats de recherches menées sur Acacia raddiana, l'un des principaux taxons spontanés du genre Acacia en Afrique, et qui, malgré sa large distribution et son importance dans l'économie rurale, n'a jusqu'à présent fait l'objet d'aucune synthèse

Différentes disciplines (écologie, écophysiologie, génétique, microbiologie, entomologie, physiologie et foresterie) ont été associées pour préciser la taxonomie et la répartition géographique de ce taxon, analyser la diversité aussi bien de la plante-hôte que des micro-organismes qui lui sont associés, caractériser son fonctionnement et les interactions en milieu naturel en réponse aux facteurs eau, azote et phosphore, enfin pour réunir les éléments nécessaires à son utilisation dans les opérations de réhabilitation.

Cet ouvrage, qui s'adresse aux chercheurs et aux enseignants, ainsi qu'aux organismes de développement, est divisé en cinq parties : diversités, écologie, usages ; fonctionnement hydrique, phénologie ; micro-organismes associés: diversités, physiologie: interactions Acacia-milieu; multiplication de l'espèce : aspects fondamentaux et appliquès.

Mots-clés

Acacia – génétique – phénologie – transpiration – nodulation – Rhizobium – mycorhize – germination – bruche – plantation – Tunisie – Sénégal – Sahel - Sahara.

This study brings together the results of research on Acacia raddiana, one of the main spontaneous taxa of the Acacia genus in Africa. Despite its large distribution and importance in the rural economy, this taxon has not been the subject of scientific synthesis. Various subjects (ecology, ecophysiology, genetics, microbiology, entomology, physiology and forestry) are brought together to specify the taxonomy and the geographic distribution of this taxon, to analyse the diversity of both the host plant and micro-organisms associated to it, to characterize its functioning and the interactions in natural environment in response to water, nitrogen, and phosphorus factors and to gather the elements required by its use in restoration.

The current work which addresses researchers, teachers as well as development organisations is divided in five parts: diversities, ecology and use; water functioning, ecology; associated micro-organisms; diversities, physiology; Acacia/environment actions; plant propagation: fundamental and applied aspects.

Keywords

Acacia - genetics - phenology - transpiration - nodulation - Rhizobium mycorhize – germination – weevil – plantation – Tunisia – Senegal – Sahel – Sahara.

29 €

ISBN 2-7099-1522-7

